Share:
Share this content in WeChat
X
Review
Advances in non-Gaussian diffusion models for cervical cancer
WANG Sisi  ZHANG Ya  CUN Hongli  ZHANG Lan  ZHANG Huimei  CHEN Jie  AI Conghui 

Cite this article as: WANG S S, ZHANG Y, CUN H L, et al. Advances in non-Gaussian diffusion models for cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 202-207. DOI:10.12015/issn.1674-8034.2025.04.033.


[Abstract] Non-Gaussian diffusion models are derived from traditional magnetic resonance diffusion-weighted imaging (DWI). Currently, there are several models such as intravoxel incoherent motion (IVIM), continuous-time random walk (CTRW), diffusion-kurtosis imaging (DKI), fractional order calculus (FROC), stretched exponential model (SEM), diffusion tensor imaging-angi perivascular space, white matter tract integrity, and mean apparent propagator MRI and so on. Compared to traditional diffusion models, these Non-Gaussian diffusion models can more accurately capture complex diffusion processes, effectively reflecting the complexity and heterogeneity of tissue microstructures, and providing additional tissue structural information. In recent years, IVIM, CTRW, DKI, FROC and SEM have been gradually applied in the evaluation of cervical cancer pathotyping, differentiation, lymphnode metastasis and the efficacy of radiotherapy and chemotherapy, each with its unique characteristics. Although research on these five models in cervical cancer is increasing, there is currently no systematic review of their applications and comparisons in cervical cancer evaluation. Therefore, this article will review the above five non-Gaussian diffusion models and their applications in cervical cancer, in hopes of providing references for clinical diagnosis and treatment.
[Keywords] non-Gaussian diffusion model;diffusion-weighted imaging;magnetic resonance imaging;cervical cancer;treatment response prediction

WANG Sisi   ZHANG Ya   CUN Hongli   ZHANG Lan   ZHANG Huimei   CHEN Jie   AI Conghui*  

Department of Radiology, Yunnan Cancer Hospital, Kunming 650118, China

Corresponding author: AI C H, E-mail: 656781921@qq.com

Conflicts of interest   None.

Received  2024-12-11
Accepted  2025-03-10
DOI: 10.12015/issn.1674-8034.2025.04.033
Cite this article as: WANG S S, ZHANG Y, CUN H L, et al. Advances in non-Gaussian diffusion models for cervical cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 202-207. DOI:10.12015/issn.1674-8034.2025.04.033.

[1]
SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA A Cancer J Clinicians, 2023, 73(1): 17-48. DOI: 10.3322/caac.21763.
[2]
FANG M J, KAN Y Y, DONG D, et al. Multi-habitat based radiomics for the prediction of treatment response to concurrent chemotherapy and radiation therapy in locally advanced cervical cancer[J/OL]. Front Oncol, 2020, 10: 563 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/32432035/. DOI: 10.3389/fonc.2020.00563.
[3]
MA J H, HUANG Y, LIU L Y, et al. An 8-gene DNA methylation signature predicts the recurrence risk of cervical cancer[J/OL]. J Int Med Res, 2021, 49(5): 3000605211018443 [2024-10-17]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8161886/. DOI: 10.1177/03000605211018443.
[4]
MAO C P, HU L X, JIANG W, et al. Discrimination between human epidermal growth factor receptor 2 (HER2)-low-expressing and HER2-overexpressing breast cancers: a comparative study of four MRI diffusion models[J]. Eur Radiol, 2024, 34(4): 2546-2559. DOI: 10.1007/s00330-023-10198-x.
[5]
LI C H, WEN Y, XIE J H, et al. Preoperative prediction of VETC in hepatocellular carcinoma using non-Gaussian diffusion-weighted imaging at high b values: a pilot study[J/OL]. Front Oncol, 2023, 13: 1167209 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/37305565/. DOI: 10.3389/fonc.2023.1167209.
[6]
FENG C, WANG Y C, DAN G Y, et al. Evaluation of a fractional-order Calculus diffusion model and bi-parametric VI-RADS for staging and grading bladder urothelial carcinoma[J]. Eur Radiol, 2022, 32(2): 890-900. DOI: 10.1007/s00330-021-08203-2.
[7]
ZHONG Z, MERKITCH D, MUGE KARAMAN M, et al. High-spatial-resolution diffusion MRI in parkinson disease: lateral asymmetry of the substantia nigra[J]. Radiology, 2019, 291(1): 149-157. DOI: 10.1148/radiol.2019181042.
[8]
YANG L, HU H J, YANG X J, et al. Whole-tumor histogram analysis of multiple non-Gaussian diffusion models at high b values for assessing cervical cancer[J]. Abdom Radiol, 2024, 49(7): 2513-2524. DOI: 10.1007/s00261-024-04486-3.
[9]
DU M, ZOU D, GAO P, et al. Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression[J/OL]. NMR Biomed, 2023, 36(8): e4920 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/36912198/. DOI: 10.1002/nbm.4920.
[10]
JIANG Y L, FAN F X, ZHANG P F, et al. Staging liver fibrosis by a continuous-time random-walk diffusion model[J]. Magn Reson Imaging, 2024, 105: 100-107. DOI: 10.1016/j.mri.2023.11.009.
[11]
WANG H Y, ZHU L X, LI G H, et al. Perfusion parameters of intravoxel incoherent motion based on tumor edge region of interest in cervical cancer: evaluation of differentiation and correlation with dynamic contrast-enhanced MRI[J]. Acta Radiol, 2020, 61(8): 1087-1095. DOI: 10.1177/0284185119890086.
[12]
LI B B, SUN H Z, ZHANG S Y, et al. The utility of APT and IVIM in the diagnosis and differentiation of squamous cell carcinoma of the cervix: a pilot study[J]. Magn Reson Imaging, 2019, 63: 105-113. DOI: 10.1016/j.mri.2019.08.020.
[13]
MENG H, GUO X, ZHANG D. Multimodal magnetic resonance imaging in the diagnosis of cervical cancer and its correlation with the differentiation process of cervical cancer[J/OL]. BMC Med Imaging, 2023, 23(1): 144 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/37773061/. DOI: 10.1186/s12880-023-01104-4.
[14]
ZHANG Q, YU X D, OUYANG H, et al. Whole-tumor texture model based on diffusion kurtosis imaging for assessing cervical cancer: a preliminary study[J]. Eur Radiol, 2021, 31(8): 5576-5585. DOI: 10.1007/s00330-020-07612-z.
[15]
WANG M D, PERUCHO J A U, VARDHANABHUTI V, et al. Radiomic features of T2-weighted imaging and diffusion kurtosis imaging in differentiating clinicopathological characteristics of cervical carcinoma[J]. Acad Radiol, 2022, 29(8): 1133-1140. DOI: 10.1016/j.acra.2021.08.018.
[16]
LI Z H, DAN G Y, TAMMANA V, et al. Predicting the aggressiveness of peripheral zone prostate cancer using a fractional order Calculus diffusion model[J/OL]. Eur J Radiol, 2021, 143: 109913 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/34464907/. DOI: 10.1016/j.ejrad.2021.109913.
[17]
ZHANG A N, HU Q M, SONG J C, et al. Value of non-Gaussian diffusion imaging with a fractional order Calculus model combined with conventional MRI for differentiating histological types of cervical cancer[J]. Magn Reson Imaging, 2022, 93: 181-188. DOI: 10.1016/j.mri.2022.08.014.
[18]
SHAO X, AN L, LIU H, et al. Cervical carcinoma: evaluation using diffusion MRI with a fractional order Calculus model and its correlation with histopathologic findings[J/OL]. Front Oncol, 2022, 12: 851677 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/35480091/. DOI: 10.3389/fonc.2022.851677.
[19]
SU Y, ZENG K J, YAN Z H, et al. Predicting the Ki-67 proliferation index in cervical cancer: a preliminary comparative study of four non-Gaussian diffusion-weighted imaging models combined with histogram analysis[J]. Quant Imaging Med Surg, 2024, 14(10): 7484-7495. DOI: 10.21037/qims-24-576.
[20]
LI C P, ZHENG M X, ZHENG X M, et al. Predictive ki-67 proliferation index of cervical squamous cell carcinoma based on IVIM-DWI combined with texture features[J/OL]. Contrast Media Mol Imaging, 2021, 2021: 8873065 [2024-11-09]. https://pubmed.ncbi.nlm.nih.gov/33531882/. DOI: 10.1155/2021/8873065.
[21]
MEYER H J, HAMERLA G, HÖHN A K, et al. Whole lesion histogram analysis derived from morphological MRI sequences might be able to predict EGFR- and Her2-expression in cervical cancer[J/OL]. Acad Radiol, 2019, 26(8): e208-e215 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/30318289/. DOI: 10.1016/j.acra.2018.09.008.
[22]
REN J L, YUAN Y, TAO X F. Histogram analysis of diffusion-weighted imaging and dynamic contrast-enhanced MRI for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma[J]. Eur Radiol, 2022, 32(4): 2739-2747. DOI: 10.1007/s00330-021-08310-0.
[23]
WINFIELD J M, ORTON M R, COLLINS D J, et al. Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI[J]. Eur Radiol, 2017, 27(2): 627-636. DOI: 10.1007/s00330-016-4417-0.
[24]
YANG H, GE X B, ZHENG X Z, et al. Predicting grade of esophageal squamous carcinoma: can stretched exponential model-based DWI perform better than bi-exponential and mono-exponential model?[J/OL]. Front Oncol, 2022, 12: 904625 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/35912203/. DOI: 10.3389/fonc.2022.904625.
[25]
ZHENG L M, JIANG P R, LIN D J, et al. Histogram analysis of mono-exponential, bi-exponential and stretched-exponential diffusion-weighted MR imaging in predicting consistency of meningiomas[J/OL]. Cancer Imaging, 2023, 23(1): 117 [2025-03-06]. https://pubmed.ncbi.nlm.nih.gov/38053183/. DOI: 10.1186/s40644-023-00633-z.
[26]
SALVO G, RAMIREZ P T, LEVENBACK C F, et al. Sensitivity and negative predictive value for sentinel lymph node biopsy in women with early-stage cervical cancer[J]. Gynecol Oncol, 2017, 145(1): 96-101. DOI: 10.1016/j.ygyno.2017.02.005.
[27]
WU Q X, ZHENG D D, SHI L G, et al. Differentiating metastatic from nonmetastatic lymph nodes in cervical cancer patients using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging[J]. Eur Radiol, 2017, 27(12): 5272-5279. DOI: 10.1007/s00330-017-4873-1.
[28]
ZHENG Y, HAN N, HUANG W J, et al. Evaluating mediastinal lymph node metastasis of non-small cell lung cancer using mono-exponential, bi-exponential, and stretched-exponential models of diffusion-weighted imaging[J]. J Thorac Imaging, 2024, 39(5): 285-292. DOI: 10.1097/RTI.0000000000000771.
[29]
JIN Y N, ZHANG Y, CHENG J L, et al. Monoexponential, Biexponential, and stretched-exponential models using diffusion-weighted imaging: a quantitative differentiation of breast lesions at 3.0T[J]. J Magn Reson Imaging, 2019, 50(5): 1461-1467. DOI: 10.1002/jmri.26729.
[30]
ZHANG J J, SUO S T, LIU G Q, et al. Comparison of monoexponential, biexponential, stretched-exponential, and kurtosis models of diffusion-weighted imaging in differentiation of renal solid masses[J]. Korean J Radiol, 2019, 20(5): 791-800. DOI: 10.3348/kjr.2018.0474.
[31]
KIM H C, SEO N, CHUNG Y E, et al. Characterization of focal liver lesions using the stretched exponential model: comparison with monoexponential and biexponential diffusion-weighted magnetic resonance imaging[J]. Eur Radiol, 2019, 29(9): 5111-5120. DOI: 10.1007/s00330-019-06048-4.
[32]
XU C, YU Y, LI X R, et al. Value of integrated PET-IVIM MRI in predicting lymphovascular space invasion in cervical cancer without lymphatic metastasis[J]. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2990-3000. DOI: 10.1007/s00259-021-05208-3.
[33]
ZHANG Y, ZHANG K Y, JIA H D, et al. Feasibility of predicting pelvic lymph node metastasis based on IVIM-DWI and texture parameters of the primary lesion and lymph nodes in patients with cervical cancer[J]. Acad Radiol, 2022, 29(7): 1048-1057. DOI: 10.1016/j.acra.2021.08.026.
[34]
ZHONG S X, AI C H, DING Y Y, et al. Combining multimodal diffusion-weighted imaging and morphological parameters for detecting lymph node metastasis in cervical cancer[J]. Abdom Radiol, 2024, 49(12): 4574-4583. DOI: 10.1007/s00261-024-04494-3.
[35]
ZHAO B, CAO K, LI X T, et al. Whole lesion histogram analysis of apparent diffusion coefficients on MRI predicts disease-free survival in locally advanced squamous cell cervical cancer after radical chemo-radiotherapy[J]. BMC Cancer, 2019, 19(1): 1115. DOI: 10.1186/s12885-019-6344-3.
[36]
GADDUCCI A, COSIO S. Neoadjuvant chemotherapy in locally advanced cervical cancer: review of the literature and perspectives of clinical research[J]. Anticancer Res, 2020, 40(9): 4819-4828. DOI: 10.21873/anticanres.14485.
[37]
ZHANG Y, ZHANG K Y, JIA H D, et al. IVIM-DWI and MRI-based radiomics in cervical cancer: Prediction of concurrent chemoradiotherapy sensitivity in combination with clinical prognostic factors[J]. Magn Reson Imaging, 2022, 91: 37-44. DOI: 10.1016/j.mri.2022.05.005.
[38]
ZHENG X M, GUO W Q, DONG J N, et al. Prediction of early response to concurrent chemoradiotherapy in cervical cancer: Value of multi-parameter MRI combined with clinical prognostic factors[J]. Magn Reson Imaging, 2020, 72: 159-166. DOI: 10.1016/j.mri.2020.06.014.
[39]
PERUCHO J A U, WANG M D, VARDHANABHUTI V, et al. Association between IVIM parameters and treatment response in locally advanced squamous cell cervical cancer treated by chemoradiotherapy[J]. Eur Radiol, 2021, 31(10): 7845-7854. DOI: 10.1007/s00330-021-07817-w.
[40]
LIANG C Y, CHEN M D, ZHAO X X, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer[J]. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005.
[41]
DOLCIAMI M, CAPUANI S, CELLI V, et al. Intravoxel incoherent motion (IVIM) MR quantification in locally advanced cervical cancer (LACC): preliminary study on assessment of tumor aggressiveness and response to neoadjuvant chemotherapy[J/OL]. J Pers Med, 2022, 12(4): 638 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/35455755/. DOI: 10.3390/jpm12040638.
[42]
ZHANG H, ZHOU Y Y, LI J, et al. The value of DWI in predicting the response to synchronous radiochemotherapy for advanced cervical carcinoma: comparison among three mathematical models[J/OL]. Cancer Imaging, 2020, 20(1): 8 [2024-10-17]. https://pubmed.ncbi.nlm.nih.gov/31937371/. DOI: 10.1186/s40644-019-0285-6.
[43]
LIU X H, ZHOU L P, PENG W J, et al. Comparison of stretched-Exponential and monoexponential model diffusion-Weighted imaging in prostate cancer and normal tissues[J]. J Magn Reson Imaging, 2015, 42(4): 1078-1085. DOI: 10.1002/jmri.24872.

PREV Application and progress of multi-parametric magnetic resonance imaging in predicting extracapsular extension of prostate cancer
NEXT Progress in the application of radiomics in the comprehensive treatment of advanced cervical cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn