Share:
Share this content in WeChat
X
Technical Article
Study of application on neonatal head coil in brain MRI examination
REN Qingfa  GONG He  YIN Zhijie  WANG Jing  LIU Quanyuan  XU Donghao  YANG Haoran  RONG Kang  LI Xianglin 

Cite this article as: REN Q F, GONG H, YIN Z J, et al. Study of application on neonatal head coil in brain MRI examination[J]. Chin J Magn Reson Imaging, 2025, 16(4): 99-104. DOI:10.12015/issn.1674-8034.2025.04.015.


[Abstract] Objective To investigate the clinical value of 16-channel neonatal head coil for neonatal cranial magnetic resonance imaging (MRI).Materials and Methods Using the water film detection method, proton density weighted imaging (PDWI) sequence was selected, and the same parameters were set. The neonatal head coil and adult head coil were respectively tested in vitro. The signal-to-noise ratio (SNR) of the two coils was obtained by processing the images for objective quantitative analysis. A total of 44 healthy neonates undergoing brain magnetic resonance examination from August 2022 to December 2023 were prospectively collected and divided into 2 groups by simple random method. To test image SNR and contrast-to-noise ratio (CNR) of gray and white matter. The T2WI sequence images with acceleration factor R = 2 were collected for both groups using neonatal head coil and adult head coil with the same parameters. Then the acceleration factor R = 2, 3, 4, 5, 6 was adjusted respectively to test the parallel acquisition capability of the coil. Neonatal brain images were comprehensively analyzed, image SNR and gray and white matter CNR of the two coils were calculated, and the parallel acquisition ability of the two coils was independently evaluated by two imaging diagnostic physicians, and the subjective score of image SNR and gray and white matter CNR was statistically analyzed by t-test.Results In vitro experiment, the SNR of neonatal head coil was 1.4 times higher than that of adult head coil, and some cortical surface areas were more than 2 times. In clinical experiments, the SNR of neonatal head coil in bilateral thalamus, basal ganglia and frontal lobe region were higher than those of adult head coil, the CNR of gray matter in bilateral thalamus and basal ganglia and white matter in frontal lobe of neonatal head coil is higher than that of adult head coil, and the differences was statistically significant (P < 0.001). After adjusting the acceleration factor, the neonatal head coil showed high parallel acquisition capability.Conclusions Neonatal head coil can improve the quality of neonatal brain magnetic resonance image.
[Keywords] neonatal head coil;signal-to-noise ratio;contrast-to-noise ratio;magnetic resonance imaging;parallel acquisition

REN Qingfa1   GONG He2   YIN Zhijie1   WANG Jing1   LIU Quanyuan1   XU Donghao3   YANG Haoran4   RONG Kang2   LI Xianglin2*  

1 Department of Radiology, Binzhou Medical University Hospital, Binzhou 256600, China

2 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

3 Department of Radiology, Central Hospital of Shengli Oil Field, Dongying 257100, China

4 Department of Radiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China

Corresponding author: LI X L, E-mail: xlli@bzmc.edu.cn

Conflicts of interest   None.

Received  2025-01-06
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.015
Cite this article as: REN Q F, GONG H, YIN Z J, et al. Study of application on neonatal head coil in brain MRI examination[J]. Chin J Magn Reson Imaging, 2025, 16(4): 99-104. DOI:10.12015/issn.1674-8034.2025.04.015.

[1]
MITHA A, CHEN R Q, RAZAZ N, et al. Neurological development in children born moderately or late preterm: national cohort study[J]. BMJ, 2024, 384: e075630. DOI: 10.1136/bmj-2023-075630.
[2]
HAO J D, NONG S H, ZHOU X G, et al. Research progress of neurodevelopmental disorders in preterm infants[J]. Chinese Journal of Applied Clinical Pediatrics, 2025,40(3): 236-240. DOI: 10.3760/cma.j.cn101070-20240612-00363.
[3]
BRENNER R G, WHEELOCK M D, NEIL J J, et al. Structural and functional connectivity in premature neonates[J/OL]. Semin Perinatol, 2021, 45(7): 151473 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/34452753/. DOI: 10.1016/j.semperi.2021.151473.
[4]
DUBOIS J, ALISON M, COUNSELL S J, et al. MRI of the neonatal brain: a review of methodological challenges and neuroscientific advances[J]. J Magn Reson Imaging, 2021, 53(5): 1318-1343. DOI: 10.1002/jmri.27192.
[5]
WINKLER I, SAPPLER M, GIZEWSKI E R, et al. Relationship between brain function and microstructural brain maturation in preterm infants[J]. Neonatology, 2024, 121(2): 213-221. DOI: 10.1159/000535042.
[6]
GILBERT K M, NICHOLS E S, GATI J S, et al. A radiofrequency coil for infants and toddlers[J/OL]. NMR Biomed, 2023, 36(8): e4928 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/36939270/. DOI: 10.1002/nbm.4928.
[7]
MU G R, XU G Z, MAO S H, et al. Design of special incubator for the MR examination of newborn[J]. China Med Devices, 2021, 36(9): 48-53. DOI: 10.3969/j.issn.1674-1633.2021.09.011.
[8]
ZHANG S Y, QI L, LI X P, et al. MRI information-based correction and restoration of photoacoustic tomography[J]. IEEE Trans Med Imaging, 2022, 41(9): 2543-2555. DOI: 10.1109/TMI.2022.3165839.
[9]
SIRIN S, GOERICKE S L, HUENING B M, et al. Evaluation of 100 brain examinations using a 3 Tesla MR-compatible incubator-safety, handling, and image quality[J]. Neuroradiology, 2013, 55(10): 1241-1249. DOI: 10.1007/s00234-013-1241-y.
[10]
HANDA A, XU L M, MACHADO-RIVAS F, et al. Magnetic resonance imaging in neonates: a practical approach to optimize image quality and increase diagnostic yield[J]. Pediatr Radiol, 2023, 53(7): 1300-1313. DOI: 10.1007/s00247-022-05550-0.
[11]
ZONG X N, LI H, ZHANG Y Q, et al. Growth reference standard of weight /head circumference ratio and length /head circumference ratio of Chinese newborns[J]. Chin J Pediatr, 2023, 61(5): 425-433. DOI: 10.3760/cma.j.cn112140-20221116-00972.
[12]
AWATA K, SHOJI H, SANTOSA I, et al. Associations between size at birth and size at 6 years among preterm infants: a retrospective cohort study[J/OL]. Pediatr Int, 2022, 64(1): e14844 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/33999477/. DOI: 10.1111/ped.14844.
[13]
FENTON T R, SAMYCIA L, ELMRAYED S, et al. Growth patterns by birth size of preterm children born at 24-29 gestational weeks for the first 3 years[J]. Paediatr Perinat Epidemiol, 2024, 38(7): 560-569. DOI: 10.1111/ppe.13081.1.
[14]
MÜLLER F, PROQUITTÉ H, HERRMANN K H, et al. Comparison of image quality in brain MRI with and without MR compatible incubator and predictive value of brain MRI at expected delivery date in preterm babies[J]. J Perinat Med, 2020, 48(7): 733-743. DOI: 10.1515/jpm-2020-0051.
[15]
GHOTRA A, KOSAKOWSKI H L, TAKAHASHI A, et al. A size-adaptive 32-channel array coil for awake infant neuroimaging at 3 Tesla MRI[J]. Magn Reson Med, 2021, 86(3): 1773-1785. DOI: 10.1002/mrm.28791.
[16]
RIOS N L, FOIAS A, LODYGENSKY G, et al. Size-adaptable 13-channel receive array for brain MRI in human neonates at 3 T[J/OL]. NMR Biomed, 2018, 31(8): e3944 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/29928791/. DOI: 10.1002/nbm.3944.
[17]
SUN Q, DONG M J, TAO X F, et al. Selection and application of coils in temporomandibular joint MRI[J/OL]. Dentomaxillofac Radiol, 2020, 49(3): 20190002 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/31559845/. DOI: 10.1259/dmfr.20190002.
[18]
GROTHEER M, ROSENKE M, WU H, et al. White matter myelination during early infancy is linked to spatial gradients and myelin content at birth[J/OL]. Nat Commun, 2022, 13(1): 997 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/35194018/. DOI: 10.1038/s41467-022-28326-4.
[19]
GROTHEER M, BLOOM D, KRUPER J, et al. Human white matter myelinates faster in utero than ex utero[J/OL]. Proc Natl Acad Sci USA, 2023, 120(33): e2303491120 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/37549280/. DOI: 10.1073/pnas.2303491120.
[20]
HO C Y, PERSOHN S, SANKAR M, et al. Development of myelin growth charts of the white matter using T1 relaxometry[J]. AJNR Am J Neuroradiol, 2024, 45(9): 1335-1345. DOI: 10.3174/ajnr.A8306.
[21]
DIPNALL L M, YANG J Y M, CHEN J, et al. Childhood development of brain white matter myelin: a longitudinal T1w/T2w-ratio study[J]. Brain Struct Funct, 2024, 229(1): 151-159. DOI: 10.1007/s00429-023-02718-8.
[22]
WEHRLE F M, LUSTENBERGER C, BUCHMANN A, et al. Multimodal assessment shows misalignment of structural and functional thalamocortical connectivity in children and adolescents born very preterm[J/OL]. Neuroimage, 2020, 215: 116779 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/32276056/. DOI: 10.1016/j.neuroimage.2020.116779.
[23]
ZHENG W H, ZHAO L L, ZHAO Z Y, et al. Spatiotemporal developmental gradient of thalamic morphology, microstructure, and connectivity fromthe third trimester to early infancy[J]. J Neurosci, 2023, 43(4): 559-570. DOI: 10.1523/JNEUROSCI.0874-22.2022.
[24]
HUANG S M, CHO K H, CHANG K, et al. Altered thalamocortical tract trajectory growth with undisrupted thalamic parcellation pattern in human lissencephaly brain at mid-gestational stage[J/OL]. Neurobiol Dis, 2024, 199: 106577 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/38914171/. DOI: 10.1016/j.nbd.2024.106577.
[25]
FAINGOLD R, PREMPUNPONG C, GARFINKLE J, et al. Association between early basal Ganglia and thalami perfusion assessed by color Doppler ultrasonography and brain injury in infants with hypoxic-ischemic encephalopathy: a prospective cohort study[J/OL]. J Pediatr, 2024, 271: 114086 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/38705232/. DOI: 10.1016/j.jpeds.2024.114086.
[26]
ALKHULAIFAT D, VENKATAKRISHNA S S B, ALVES C A P F, et al. Distinguishing multicystic from focal encephalomalacia on delayed MRI in children with term hypoxic ischemic injury[J]. J Neuroimaging, 2024, 34(3): 386-392. DOI: 10.1111/jon.13190.
[27]
LI Q G, YU Y, REN Y J, et al. Application value of multi-channel parallel acquisition technique in 3.0 T intraoperative magnetic resonance imaging[J]. China Med Devices, 2020, 35(10): 71-74. DOI: 10.3969/j.issn.1674-1633.2020.10.014.
[28]
GALLO-BERNAL S, ALEJANDRA BEDOYA M, GEE M S, et al. Pediatric magnetic resonance imaging: faster is better[J]. Pediatr Radiol, 2023, 53(7): 1270-1284. DOI: 10.1007/s00247-022-05529-x.
[29]
Neonatologist Society, Chinese Medical Doctor Association; Editorial Board of Chinese Journal of Contemporary Pediatrics. Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging[J]. Chinese Journal of Contemporary Pediatrics, 2022, 24(1): 14-25. DOI: 10.7499/j.issn.1008-8830.2110018.
[30]
SCHOOLER G R, CRAVERO J P, CALLAHAN M J. Assessing and conveying risks and benefits of imaging in neonates using ionizing radiation and sedation/anesthesia[J]. Pediatr Radiol, 2022, 52(4): 616-621. DOI: 10.1007/s00247-021-05138-0.
[31]
SIEN M E, ROBINSON A L, HU H H, et al. Feasibility of and experience using a portable MRI scanner in the neonatal intensive care unit[J]. Arch Dis Child Fetal Neonatal Ed, 2023, 108(1): 45-50. DOI: 10.1136/archdischild-2022-324200.
[32]
THIIM K R, SINGH E, MUKUNDAN S, et al. Clinical experience with an in-NICU magnetic resonance imaging system[J]. J Perinatol, 2022, 42(7): 873-879. DOI: 10.1038/s41372-022-01387-5.
[33]
BERSON E R, MOZAYAN A, PETEREC S, et al. A 1-Tesla MRI system for dedicated brain imaging in the neonatal intensive care unit[J/OL]. Front Neurosci, 2023, 17: 1132173 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/36845429/. DOI: 10.3389/fnins.2023.1132173.
[34]
NEUMILLER A J, MURPHY K M, WANG H, et al. Acoustic noise in a small-format 3.0-T neonatal MRI system[J]. Pediatr Radiol, 2024, 54(12): 2068-2076. DOI: 10.1007/s00247-024-06070-9.
[35]
ZHAO H F, JIN C, YANG J. Impacts of magnetic resonance imaging noise on hearing function in fetus and infants[J]. Chin J Magn Reson Imag, 2019, 10(7): 546-550. DOI: 10.12015/issn.1674-8034.2019.07.013.
[36]
JIN C, ZHAO H F, LI H, et al. Auditory effects of acoustic noise from 3-T brain MRI in neonates with hearing protection[J]. J Magn Reson Imaging, 2024, 60(6): 2332-2340. DOI: 10.1002/jmri.29450.
[37]
VAN OOIJEN I M, ANNINK K V, BENDERS M J N L, et al. Introduction of ultra-high-field MR brain imaging in infants: vital parameters, temperature and comfort[J/OL]. Neuroimage Rep, 2023, 3(2): 100175 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/38357432/. DOI: 10.1016/j.ynirp.2023.100175.
[38]
BRIDGEN P, TOMI-TRICOT R, UUS A, et al. High resolution and contrast 7 tesla MR brain imaging of the neonate[J/OL]. Front Radiol, 2024, 3: 1327075 [2025-01-05]. https://pubmed.ncbi.nlm.nih.gov/38304343/. DOI: 10.3389/fradi.2023.1327075.

PREV Preliminary exploration of predicting clinical efficacy after acupuncture and rehabilitation therapy for lumbar disc herniation based on Radiomics Features of MRI
NEXT ATP1A2 mutation familial hemiplegic migraine: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn