Share:
Share this content in WeChat
X
Clinical Article
A study on the histogram of DCE-MRI pharmacokinetic parameters for predicting endocrine therapy response in prostate cancer
LI Jing  ZOU Caixia  PAN Nini  CHEN Jun  HUANG Gang 

Cite this article as: LI J, ZOU C X, PAN N N, et al. A study on the histogram of DCE-MRI pharmacokinetic parameters for predicting endocrine therapy response in prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 70-80. DOI:10.12015/issn.1674-8034.2025.04.011.


[Abstract] Objective To explore the value of predicting the response of prostate cancer (PCa) to endocrine therapy based on the histogram features of pharmacokinetic parameters of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI).Materials and Methods Retrospectively collect the clinical and imaging data of PCa patients from Zhangye People's Hospital Affiliated to Hexi University from January 2018 to October 2023 and Gansu Provincial People's Hospital from February 2020 to February 2023, two weeks before endocrine therapy. A total of 105 cases were collected from Zhangye People's Hospital Affiliated to Hexi University, which were divided into a training set (73 cases) and an internal validation set (32 cases) at a ratio of 7∶3. A total of 47 cases were collected from Gansu Provincial People's Hospital as an external validation set. Select the original DCE-MRI images, and obtain the pseudo-color maps of pharmacokinetic parameters including volume transfer constant (Ktrans), rate constant (Kep), and extravascular extracellular volume fraction (Ve) through the Siemens Syngovia workstation. In the 3D Slicer software, referring to the axial T2-weighted imaging (T2WI), delineate the region of interest (ROI) of the whole prostate gland layer by layer on the pseudo-color maps of pharmacokinetic parameters, and then extract the histogram features. Through dimensionality reduction by the least absolute shrinkage and selection operator (LASSO), 8 optimal features were screened out and the histogram features was calculated. Univariate and backward multivariate logistic regression were used to analyze the independent predictive factors of the good-response group and the poor-response group of endocrine therapy, and a clinical model, a histogram features model, and a combined model were constructed. The area under the curve (AUC) was calculated using the receiver operating characteristic (ROC) curve, and the calibration curve and decision curve were used to evaluate the performance of the model. The efficacy of each model was evaluated by the DeLong test. Finally, a nomogram was drawn based on the independent predictive factors of the combined model.Results In the training set, internal validation set, and external validation set, there were statistically significant differences in Gleason score, MRI-T stage, and histogram features between the good-response group and the poor-response group (P < 0.001). Backward multivariate logistic regression analysis showed that the Gleason score (OR = 0.925, 95% CI: 0.859 to 0.958, P = 0.038), MRI-T stage (OR = 0.871, 95% CI: 0.800 to 0.949, P = 0.002), and histogram features (OR = 0.096, 95% CI: 0.056 to 0.137, P < 0.001) were independent predictive factors for the response of PCa to endocrine therapy. The AUCs of the clinical model in the training set, internal validation set, and external validation set were 0.857 (95% CI: 0.774 to 0.939), 0.953 (95% CI: 0.888 to 0.996), and 0.808 (95% CI: 0.676 to 0.941), respectively. The AUCs of the histogram features model in the training set, internal validation set, and external validation set were 0.874 (95% CI: 0.769 to 0.951), 0.816 (95% CI: 0.664 to 0.967), and 0.674 (95% CI: 0.517 to 0.831), respectively. The AUCs of the combined model in the training set, internal validation set, and external validation set were 0.951 (95% CI: 0.906 to 0.994), 0.973 (95% CI: 0.922 to 0.995), and 0.830 (95% CI: 0.699 to 0.960), respectively. The analysis of the decision curve and calibration curve showed that the combined model had good clinical application value and stability. The DeLong test and NRI value showed that the predictive efficacy of the combined model was better than that of the clinical model and the histogram features model.Conclusions The histogram features of DCE-MRI pharmacokinetic parameters is an independent predictive factor for predicting the response of PCa to endocrine therapy. The combined model has good value in predicting the response of PCa to endocrine therapy, providing new ideas for clinical treatment decisions.
[Keywords] prostate cancer;magnetic resonance imaging;dynamic contrast enhancement;histogram;endocrine therapy

LI Jing1, 2   ZOU Caixia1   PAN Nini3   CHEN Jun4   HUANG Gang3*  

1 The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China

2 Institute of Imaging, Zhangye People's Hospital, Hexi University, Zhangye 734000, China

3 Department of Radiology, Gansu Provincial People's Hospital, Lanzhou 730000, China

4 Department of Health Imaging Diagnosis, Bayer Healthcare Co., Ltd, Wuhan 430000, China

Corresponding author: HUANG G, E-mail: keen0999@163.com

Conflicts of interest   None.

Received  2024-10-22
Accepted  2025-04-10
DOI: 10.12015/issn.1674-8034.2025.04.011
Cite this article as: LI J, ZOU C X, PAN N N, et al. A study on the histogram of DCE-MRI pharmacokinetic parameters for predicting endocrine therapy response in prostate cancer[J]. Chin J Magn Reson Imaging, 2025, 16(4): 70-80. DOI:10.12015/issn.1674-8034.2025.04.011.

[1]
FILHO A M, LAVERSANNE M, FERLAY J, et al. The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide[J]. Int J Cancer, 2025, 156(7): 1336-1346. DOI: 10.1002/ijc.35278.
[2]
HAN B F, ZHENG R S, ZENG H M, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1): 47-53. DOI: 10.1016/j.jncc.2024.01.006.
[3]
LIU W, YAO Y, LIU X, et al. Neoadjuvant hormone therapy for patients with high-risk prostate cancer: a systematic review and meta-analysis[J]. Asian J Androl, 2021, 23(4): 429-436. DOI: 10.4103/aja.aja_96_20.
[4]
WILKINSON S, HARMON S A, TERRIGINO N T, et al. A case report of multiple primary prostate tumors with differential drug sensitivity[J]. Nat Commun, 2020, 11(1): 837. DOI: 10.1038/s41467-020-14657-7.
[5]
ALONZI R, PADHANI A R, JANE TAYLOR N, et al. Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI[J]. Int J Radiat Oncol Biol Phys, 2011, 80(3): 721-727. DOI: 10.1016/j.ijrobp.2010.02.060.
[6]
BJÖRELAND U, NYHOLM T, JONSSON J, et al. Impact of neoadjuvant androgen deprivation therapy on magnetic resonance imaging features in prostate cancer before radiotherapy[J]. Phys Imaging Radiat Oncol, 2021, 17: 117-123. DOI: 10.1016/j.phro.2021.01.004.
[7]
RAKAUSKAS A, SHAH T T, PETERS M, et al. Can quantitative analysis of multi-parametric MRI independently predict failure of focal salvage HIFU therapy in men with radio-recurrent prostate cancer?[J/OL]. Urol Oncol, 2021, 39(12): 830.e1-830.e8 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8639607/. DOI: 10.1016/j.urolonc.2021.04.017.
[8]
QIAO J Y, LIU B T, XIN J, et al. Prediction of prognosis and response to androgen deprivation therapy in intermediate to high-risk prostate cancer using 18F-FDG PET/CT radiomics[J]. Acad Radiol, 2024, 31(12): 5008-5021. DOI: 10.1016/j.acra.2024.06.034.
[9]
ZHOU C, ZHANG Y F, GUO S, et al. Multimodal data integration for predicting progression risk in castration-resistant prostate cancer using deep learning: A multicenter retrospective study[J/OL]. Front Oncol, 2024, 14: 1287995 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10972942/. DOI: 10.3389/fonc.2024.1287995.
[10]
SUN N N, GE X L, LIU X S, et al. Histogram analysis of DCE-MRI for chemoradiotherapy response evaluation in locally advanced esophageal squamous cell carcinoma[J]. Radiol Med, 2020, 125(2): 165-176. DOI: 10.1007/s11547-019-01081-1.
[11]
PHAM T T, LINEY G, WONG K, et al. Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer[J]. Phys Imaging Radiat Oncol, 2021, 18: 26-33. DOI: 10.1016/j.phro.2021.03.003.
[12]
SKOTHEIM R I, BOGAARD M, CARM K T, et al. Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature[J/OL]. Biochim Biophys Acta Rev Cancer, 2024, 1879(2): 189080 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38272101/. DOI: 10.1016/j.bbcan.2024.189080.
[13]
ZHAO Y, ZHANG J, WANG N, et al. Intratumoral and peritumoral radiomics based on contrast-enhanced MRI for preoperatively predicting treatment response of transarterial chemoembolization in hepatocellular carcinoma[J/OL]. BMC Cancer, 2023, 23(1): 1026 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10594790/. DOI: 10.1186/s12885-023-11491-0.
[14]
MOTTET N, VAN DEN BERGH R C N, BRIERS E, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer-2020 update. part 1: screening, diagnosis, and local treatment with curative intent[J]. Eur Urol, 2021, 79(2): 243-262. DOI: 10.1016/j.eururo.2020.09.042.
[15]
ZWANENBURG A, VALLIÈRES M, ABDALAH M A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping[J]. Radiology, 2020, 295(2): 328-338. DOI: 10.1148/radiol.2020191145.
[16]
DESAI K, MCMANUS J M, SHARIFI N. Hormonal therapy for prostate cancer[J]. Endocr Rev, 2021, 42(3): 354-373. DOI: 10.1210/endrev/bnab002.
[17]
NIU X N, ZHANG Y G. Advances in endocrine therapy in advanced prostate cancer[J]. J Mod Oncol, 2024, 32(5): 973-977. DOI: 10.3969/j.issn.1672-4992.2024.05.033.
[18]
HUSSAIN M, GOLDMAN B, TANGEN C, et al. Prostate-specific antigen progression predicts overall survival in patients with metastatic prostate cancer: data from Southwest Oncology Group Trials 9346 (Intergroup Study 0162) and 9916[J]. J Clin Oncol, 2009, 27(15): 2450-2456. DOI: 10.1200/JCO.2008.19.9810.
[19]
YANKEELOV T E, GORE J C. Dynamic contrast enhanced magnetic resonance imaging in oncology: theory, data acquisition, analysis, and examples[J]. Curr Med Imaging Rev, 2009, 3(2): 91-107. DOI: 10.2174/157340507780619179.
[20]
PETRALIA G, SUMMERS P E, AGOSTINI A, et al. Dynamic contrast-enhanced MRI in oncology: how we do it[J]. Radiol Med, 2020, 125(12): 1288-1300. DOI: 10.1007/s11547-020-01220-z.
[21]
FENG X, CHEN X, PENG P, et al. Values of multiparametric and biparametric MRI in diagnosing clinically significant prostate cancer: a multivariate analysis[J/OL]. BMC Urol, 2024, 24(1): 40 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10870467/. DOI: 10.1186/s12894-024-01411-0.
[22]
FUKUNAGA T, TAMADA T, KANOMATA N, et al. Quantitative diffusion-weighted imaging and dynamic contrast-enhanced MR imaging for assessment of tumor aggressiveness in prostate cancer at 3T[J]. Magn Reson Imaging, 2021, 83: 152-159. DOI: 10.1016/j.mri.2021.08.009.
[23]
WU X, REINIKAINEN P, KAPANEN M, et al. Monitoring radiotherapy induced tissue changes in localized prostate cancer by multi-parametric magnetic resonance imaging (MP-MRI)[J]. Diagn Interv Imaging, 2019, 100(11): 699-708. DOI: 10.1016/j.diii.2019.06.003.
[24]
HÖTKER A M, MAZAHERI Y, ZHENG J T, et al. Prostate Cancer: assessing the effects of androgen-deprivation therapy using quantitative diffusion-weighted and dynamic contrast-enhanced MRI[J]. Eur Radiol, 2015, 25(9): 2665-2672. DOI: 10.1007/s00330-015-3688-1.
[25]
PIGNOT G, MAILLET D, GROSS E, et al. Systemic treatments for high-risk localized prostate cancer[J]. Nat Rev Urol, 2018, 15(8): 498-510. DOI: 10.1038/s41585-018-0017-x.
[26]
GE R B, WANG Z W, CHENG L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance[J/OL]. NPJ Precis Oncol, 2022, 6(1): 31 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9068628/. DOI: 10.1038/s41698-022-00272-w.
[27]
YAN Y, SHAO L Z, LIU Z Y, et al. Deep learning with quantitative features of magnetic resonance images to predict biochemical recurrence of radical prostatectomy: A multi-center study[J/OL]. Cancers, 2021, 13(12): 3098 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8234539/. DOI: 10.3390/cancers13123098.
[28]
LI L, SHIRADKAR R, LEO P, et al. A novel imaging based Nomogram for predicting post-surgical biochemical recurrence and adverse pathology of prostate cancer from pre-operative bi-parametric MRI[J/OL]. EBioMedicine, 2021, 63: 103163 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7744939/. DOI: 10.1016/j.ebiom.2020.103163.
[29]
SOLLINI M, ANTUNOVIC L, CHITI A, et al. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13): 2656-2672. DOI: 10.1007/s00259-019-04372-x.
[30]
NAGASAKA K, SATAKE H, ISHIGAKI S, et al. Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer[J]. Breast Cancer, 2019, 26(1): 113-124. DOI: 10.1007/s12282-018-0899-8.
[31]
VAN NIEKERK C G, VAN DER LAAK J A W M, HAMBROCK T, et al. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer[J]. Eur Radiol, 2014, 24(10): 2597-2605. DOI: 10.1007/s00330-014-3301-z.
[32]
BORREN A, GROENENDAAL G, VAN DER GROEP P, et al. Expression of hypoxia-inducible factor-1α and-2α in whole-mount prostate histology: relation with dynamic contrast-enhanced MRI and Gleason score[J]. Oncol Rep, 2013, 29(6): 2249-2254. DOI: 10.3892/or.2013.2392.
[33]
MOHAMED O A A, TESEN H S, HANY M, et al. The role of hypoxia on prostate cancer progression and metastasis[J]. Mol Biol Rep, 2023, 50(4): 3873-3884. DOI: 10.1007/s11033-023-08251-5.
[34]
CHANG C B, LIN Y C, WONG Y C, et al. Quantitative dynamic contrast-enhanced magnetic resonance parameters could predict international society of urological pathology risk groups of prostate cancers on radical prostatectomy[J/OL]. Life, 2023, 13(9): 1944 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10532885/. DOI: 10.3390/life13091944.
[35]
ZHANG A N, SONG J C, MA Z L, et al. Combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging to predict neoadjuvant chemotherapy effect in FIGO stage IB2-IIA2 cervical cancers[J]. La Radiol Med, 2020, 125(12): 1233-1242. DOI: 10.1007/s11547-020-01214-x.
[36]
CALIMERI T, STEFFANONI S, GAGLIARDI F, et al. How we treat primary central nervous system lymphoma[J/OL]. ESMO Open, 2021, 6(4): 100213 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/34271311/. DOI: 10.1016/j.esmoop.2021.100213.
[37]
TOFTS P S, KERMODE A G. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts[J]. Magn Reson Med, 1991, 17(2): 357-367. DOI: 10.1002/mrm.1910170208.
[38]
TOFTS P S. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging[J]. J Magn Reson Imaging, 1997, 7(1): 91-101. DOI: 10.1002/jmri.1880070113.
[39]
SHUKLA-DAVE A, LEE N Y, JANSEN J F A, et al. Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases[J]. Int J Radiat Oncol Biol Phys, 2012, 82(5): 1837-1844. DOI: 10.1016/j.ijrobp.2011.03.006.
[40]
BOZDAĞ M, ER A L, ÇINKOOĞLU A. Histogram analysis of ADC maps for differentiating brain metastases from different histological types of lung cancers[J]. Can Assoc Radiol J, 2021, 72(2): 271-278. DOI: 10.1177/0846537120933837.
[41]
LI C M, YU L, JIANG Y W, et al. The histogram analysis of intravoxel incoherent motion-kurtosis model in the diagnosis and grading of prostate cancer - A preliminary study[J/OL]. Front Oncol, 2021, 11: 604428 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8579734/. DOI: 10.3389/fonc.2021.604428.
[42]
VAUPEL P. Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis[J]. 2008, 13(Suppl 3): 21-26. DOI: 10.1634/theoncologist.13-S3-21.
[43]
CHEN S X, CHEN H R. Design, synthesis and anti-tumor activity of hypoxia-responsive nanomedicines[J]. Prog Pharm Sci, 2021, 45(4): 254-262. DOI: 1001-5094(2021)04-0254-09.
[44]
BRISTOW R G, BERLIN A, DAL PRA A. An arranged marriage for precision medicine: hypoxia and genomic assays in localized prostate cancer radiotherapy[J/OL]. Br J Radiol, 2014, 87(1035): 20130753 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC4064607/. DOI: 10.1259/bjr.20130753.
[45]
OTO A, YANG C, KAYHAN A, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis[J]. AJR Am J Roentgenol, 2011, 197(6): 1382-1390. DOI: 10.2214/AJR.11.6861.
[46]
DONALDSON S B, WEST C M L, DAVIDSON S E, et al. A comparison of tracer kinetic models for T1-weighted dynamic contrast-enhanced MRI: application in carcinoma of the cervix[J]. Magn Reson Med, 2010, 63(3): 691-700. DOI: 10.1002/mrm.22217.
[47]
FENG D C, XIONG Q, WEI Q, et al. Cellular landscape of tumour microenvironment in prostate cancer[J]. Immunology, 2023, 168(2): 199-202. DOI: 10.1111/imm.13456.
[48]
FANG B W, LU Y, LI X M, et al. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer[J/OL]. Prostate Cancer Prostatic Dis, 2024 [2024-10-21]. https://pubmed.ncbi.nlm.nih.gov/38565910/. DOI: 10.1038/s41391-024-00825-z.
[49]
MUSTAFA M, RASS H ABU, YAHYA M, et al. Primary metastatic prostate cancer between prognosis or adequate/proper medical therapy[J/OL]. World J Surg Oncol, 2021, 19(1): 5 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7783967/. DOI: 10.1186/s12957-020-02111-3.
[50]
LIU J, CHEN K, LIU J, et al. Value of contrast-enhanced ultrasound in early predicting the progression of castration-resistant prostate cancer after endocrine therapy in patients with prostate cancer[J]. Radiol Pract, 2021, 36(9): 1127-1132. DOI: 10.13609/j.cnki.1000-0313.2021.09.010.
[51]
GASINSKA A, JASZCZYNSKI J, RYCHLIK U, et al. Prognostic significance of serum PSA level and telomerase, VEGF and GLUT-1 protein expression for the biochemical recurrence in prostate cancer patients after radical prostatectomy[J]. Pathol Oncol Res, 2020, 26(2): 1049-1056. DOI: 10.1007/s12253-019-00659-4.
[52]
YANG D D, MAHAL B A, MURALIDHAR V, et al. Androgen deprivation therapy and overall survival for gleason 8 versus gleason 9-10 prostate cancer[J]. Eur Urol, 2019, 75(1): 35-41. DOI: 10.1016/j.eururo.2018.08.033.
[53]
PALLARES J, ROJO F, IRIARTE J, et al. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues[J]. Histol Histopathol, 2006, 21(8): 857-865. DOI: 10.14670/HH-21.857.
[54]
EGEVAD L, MICOLI C, DELAHUNT B, et al. Prognosis of Gleason score 8 prostatic adenocarcinoma in needle biopsies: a nationwide population-based study[J]. Virchows Arch, 2024, 484(6): 995-1003. DOI: 10.1007/s00428-024-03810-y.
[55]
EGEVAD L, MICOLI C, SAMARATUNGA H, et al. Prognosis of gleason score 9-10 prostatic adenocarcinoma in needle biopsies: a nationwide population-based study[J]. Eur Urol Oncol, 2024, 7(2): 213-221. DOI: 10.1016/j.euo.2023.11.002.
[56]
JANG W S, YOON C Y, KIM K H, et al. Prognostic significance of vas deferens invasion after radical prostatectomy in patients with pathological stage T3b prostate cancer[J]. Ann Surg Oncol, 2017, 24(4): 1143-1149. DOI: 10.1245/s10434-016-5653-x.
[57]
HEERING M, BERG K D, BRASSO K, et al. Radical prostatectomy in Denmark: Survival analysis and temporal trends in clinicopathological parameters with up to 20 years of follow-up[J]. Surg Oncol, 2017, 26(1): 21-27. DOI: 10.1016/j.suronc.2016.12.002.
[58]
YAXLEY W, DELAHUNT B, YAXLEY J, et al. Prognostic significance of percentage Gleason grade 5 prostatic adenocarcinoma in needle biopsies from patients treated by radical prostatectomy[J]. Pathology, 2022, 54(6): 694-699. DOI: 10.1016/j.pathol.2022.02.009.
[59]
WENZEL M, WÜRNSCHIMMEL C, CHIERIGO F, et al. Pattern of biopsy gleason grade group 5 (4 + 5 vs 5 + 4 vs 5 + 5) predicts survival after radical prostatectomy or external beam radiation therapy[J]. Eur Urol Focus, 2022, 8(3): 710-717. DOI: 10.1016/j.euf.2021.04.011.
[60]
MIAN B M, FEUSTEL P J, AZIZ A, et al. Complications following transrectal and transperineal prostate biopsy: results of the ProBE-PC randomized clinical trial[J]. J Urol, 2024, 211(2): 205-213. DOI: 10.1097/JU.0000000000003788.
[61]
ALHAMDANI Z, POPPENBEEK S, BOLTON D, et al. Do alpha blockers reduce the risk of urinary retention post-transperineal prostate biopsy? A systematic narrative review[J/OL]. World J Urol, 2024, 42(1): 332 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11101363/. DOI: 10.1007/s00345-024-05001-5.
[62]
HU C H, QIAO X M, HUANG R P, et al. Development and validation of a multimodality model based on whole-slide imaging and biparametric MRI for predicting postoperative biochemical recurrence in prostate cancer[J/OL]. Radiol Imaging Cancer, 2024, 6(3): e230143 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11148661/. DOI: 10.1148/rycan.230143.
[63]
VIS A N, MEIJER D, ROBERTS M J, et al. Development and external validation of a novel nomogram to predict the probability of pelvic lymph-node metastases in prostate cancer patients using magnetic resonance imaging and molecular imaging with prostate-specific membrane antigen positron emission tomography[J]. Eur Urol Oncol, 2023, 6(6): 553-563. DOI: 10.1016/j.euo.2023.03.010.
[64]
ZAMBOGLOU C, PEEKEN J C, JANBAIN A, et al. Development and validation of a multi-institutional nomogram of outcomes for PSMA-PET-based salvage radiotherapy for recurrent prostate cancer[J/OL]. JAMA Netw Open, 2023, 6(5): e2314748 [2024-10-21]. https://pmc.ncbi.nlm.nih.gov/articles/PMC10208140/. DOI: 10.1001/jamanetworkopen.2023.14748.

PREV Assessing the efficacy of MRI radiomics for KRAS mutation prediction in colorectal cancer: insights from a systematic review and Meta-analysis
NEXT Predictive value of ADCmean combined with PSAD in clinically significant prostate cancer with PI-RADS score ≥ 3
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn