Share:
Share this content in WeChat
X
Clinical Article
R2* and PDFF quantification: evaluation of lumbar spine bone marrow iron deposition, fat content and diagnostic value of osteoporosis in middle-aged and elderly women
GAO Lei  MIAO Miao  ZHANG Wei  LIU Ying  ZHANG Lei  YANG Boyang  ZHAO Jian 

Cite this article as: GAO L, MIAO M, ZHANG W, et al. R2* and PDFF quantification: evaluation of lumbar spine bone marrow iron deposition, fat content and diagnostic value of osteoporosis in middle-aged and elderly women[J]. Chin J Magn Reson Imaging, 2025, 16(3): 90-95. DOI:10.12015/issn.1674-8034.2025.03.014.


[Abstract] Objective R2* value and proton density fat fraction (PDFF) of lumbar spine in middle-aged and elderly women were measured by mDixon-Quant technique to evaluate iron deposition and fat content in bone marrow, explore the correlations between R2*, PDFF and bone mineral density (BMD) and evaluate the diagnostic value for osteoporosis (OP).Materials and Methods A total of 105 middle-aged and elderly women underwent lumbar spine MRI using the mDixon-Quant sequence. R2* values and PDFF of L1 to L5 vertebrae were measured, and BMD of L1 to L5 vertebrae were obtained after post-processing of lumbar spine quantitative computed tomography (QCT) scans. General clinical data were recorded. The trend of changes in values of R2*, PDFF, and BMD of L1 to L5 vertebrae were evaluated. Partial correlation analysis was performed to assess associations among R2*, PDFF, and BMD. The diagnostic efficacy of R2* and PDFF on OP was evaluated using receiver operating characteristic (ROC) curve analysis and DeLong's test was used to compare the diagnostic efficacy.Results R2* value and BMD gradually decreased from lumbar 1 to lumbar 5 vertebrae (Ptrend < 0.05), and the PDFF gradually increased (Ptrend < 0.05). After age adjustment, lumbar R2* demonstrated a negative correlation with PDFF (r = -0.227, P = 0.020), and a positive correlation with lumbar BMD (r = 0.332, P < 0.001). The area under curve (AUC) of R2* and PDFF diagnosis for OP were 0.792 and 0.702, respectively, difference showed no statistical significance (P = 0.07). The AUC of R2* combined with PDFF in diagnosis of OP was 0.804, 95% confidence interval (95% CI) was (0.702 to 0.865), sensitivity was 81.8% and specificity was 73.5%, and the diagnostic efficacy was better than that of PDFF (P = 0.01). R2* was associated with BMD and PDFF.Conclusions There were physiological gradient changes in R2*, PDFF and BMD of lumbar spine in middle-aged and elderly women. The efficacy of R2* in diagnosis of OP was comparable to that of PDFF, R2* combined with PDFF achieved the highest diagnostic efficacy on OP.
[Keywords] lumbar spine;osteoporosis;magnetic resonance imaging;mDixon-Quant;bone marrow fat;iron deposition

GAO Lei   MIAO Miao   ZHANG Wei   LIU Ying   ZHANG Lei   YANG Boyang   ZHAO Jian*  

Department of Medical Imaging, Hebei Medical University Third Hospital, Shijiazhuang 050051, China

Corresponding author: ZHAO J, E-mail: 37400408@hebmu.edu.cn

Conflicts of interest   None.

Received  2024-12-28
Accepted  2025-03-07
DOI: 10.12015/issn.1674-8034.2025.03.014
Cite this article as: GAO L, MIAO M, ZHANG W, et al. R2* and PDFF quantification: evaluation of lumbar spine bone marrow iron deposition, fat content and diagnostic value of osteoporosis in middle-aged and elderly women[J]. Chin J Magn Reson Imaging, 2025, 16(3): 90-95. DOI:10.12015/issn.1674-8034.2025.03.014.

[1]
ZHANG H, YANG F, CAO Z H, et al. The influence of iron on bone metabolism disorders[J]. Osteoporos Int, 2024, 35(2): 243-253. DOI: 10.1007/s00198-023-06937-x.
[2]
CHE J M, YANG J C, ZHAO B, et al. The effect of abnormal iron metabolism on osteoporosis[J]. Biol Trace Elem Res, 2020, 195(2): 353-365. DOI: 10.1007/s12011-019-01867-4.
[3]
PAPAKONSTANTINOU O, ALEXOPOULOU E, ECONOMOPOULOS N, et al. Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta-thalassemia major[J]. J Magn Reson Imaging, 2009, 29(4): 853-859. DOI: 10.1002/jmri.21707.
[4]
FRANÇA M, MARTÍ-BONMATÍ L, PORTO G, et al. Tissue iron quantification in chronic liver diseases using MRI shows a relationship between iron accumulation in liver, spleen, and bone marrow[J/OL]. Clin Radiol, 2018, 73(2): 215.e1-215215.e9 [2024-12-24]. https://pubmed.ncbi.nlm.nih.gov/28863932/. DOI: 10.1016/j.crad.2017.07.022.
[5]
SCHMEEL F C, VOMWEG T, TRÄBER F, et al. Proton density fat fraction MRI of vertebral bone marrow: Accuracy, repeatability, and reproducibility among readers, field strengths, and imaging platforms[J]. J Magn Reson Imaging, 2019, 50(6): 1762-1772. DOI: 10.1002/jmri.26748.
[6]
KÜHN J P, HERNANDO D, MEFFERT P J, et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis[J]. Eur Radiol, 2013, 23(12): 3432-3439. DOI: 10.1007/s00330-013-2950-7.
[7]
KIM D, KIM S K, LEE S J, et al. Simultaneous estimation of the fat fraction and R2* via T2*-corrected 6-echo Dixon volumetric interpolated breath-hold examination imaging for osteopenia and osteoporosis detection: correlations with sex, age, and menopause[J]. Korean J Radiol, 2019, 20(6): 916-930. DOI: 10.3348/kjr.2018.0032.
[8]
ZHOU F, SHENG B, LV F R. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 721 [2024-12-24]. https://pubmed.ncbi.nlm.nih.gov/37697287/. DOI: 10.1186/s12891-023-06846-4.
[9]
ZHOU F, SHENG B, LV F R. Assessing fat fraction and R2* value of lumbar spine based on MRI as a marker of bone mineral density[J]. Br J Radiol, 2024, 97(1164): 2024-2032. DOI: 10.1093/bjr/tqae192.
[10]
LEE H, YUN J S, PARK S, et al. Physiological gradient in lumbar spine fat fraction and R2* and its impact on osteoporosis diagnosis[J]. Spine J, 2024, 24(3): 479-487. DOI: 10.1016/j.spinee.2023.10.015.
[11]
BRAY T J P, BAINBRIDGE A, PUNWANI S, et al. Simultaneous quantification of bone edema/adiposity and structure in inflamed bone using chemical shift-encoded MRI in spondyloarthritis[J]. Magn Reson Med, 2018, 79(2): 1031-1042. DOI: 10.1002/mrm.26729.
[12]
YANG J, SUN H M, YANG H, et al. The quantitative parameters derived from IDEAL-IQ in the lumbar vertebrae of healthy children: a pilot study of bone development[J]. Quant Imaging Med Surg, 2024, 14(1): 136-143. DOI: 10.21037/qims-23-696.
[13]
FENG H M, HONG J L, CHEN W W, et al. Correlation between fat fraction and R2* values in the lumbar and bone mineral density and age[J]. Chin J Med Imag, 2019, 27(4): 302-304. DOI: 10.3969/j.issn.1005-5185.2019.04.015.
[14]
CHENG X G, YUAN H S, CHENG J L, et al. Chinese expert consensus on the diagnosis of osteoporosis by imaging and bone mineral density[J]. Quant Imaging Med Surg, 2020, 10(10): 2066-2077. DOI: 10.21037/qims-2020-16.
[15]
JHAVERI K S, KANNENGIESSER S A R, WARD R, et al. Prospective evaluation of an R2* method for assessing liver iron concentration (LIC) against FerriScan: derivation of the calibration curve and characterization of the nature and source of uncertainty in the relationship[J]. J Magn Reson Imaging, 2019, 49(5): 1467-1474. DOI: 10.1002/jmri.26313.
[16]
PINTO V M, BACIGALUPO L, GIANESIN B, et al. Lack of correlation between heart, liver and pancreas MRI-R2*: Results from long-term follow-up in a cohort of adult β-thalassemia major patients[J/OL]. Am J Hematol, 2018, 93(3): E79-E82 [2024-12-24]. https://pubmed.ncbi.nlm.nih.gov/29265491/. DOI: 10.1002/ajh.25009.
[17]
ZENG Z L, MA X Z, GUO Y F, et al. Quantifying bone marrow fat fraction and iron by MRI for distinguishing aplastic Anemia from myelodysplastic syndromes[J]. J Magn Reson Imaging, 2021, 54(6): 1754-1760. DOI: 10.1002/jmri.27769.
[18]
ZHOU F, LÜ F R. Research status and progress in the application of MRI quantitative techniques in osteoporosis[J]. Chin J Magn Reson Imag, 2023, 14(9): 192-197. DOI: 10.12015/issn.1674-8034.2023.09.035.
[19]
PAN Z X, LI Z J, LIAO J, et al. Influence of liver iron overload and steatosis on ADC value in evaluating liver fibrosis in patients with chronic hepatitis B[J]. Chin J Magn Reson Imag, 2021, 12(7): 18-23. DOI: 10.12015/issn.1674-8034.2021.07.004.
[20]
WANG L, QU H J, YANG W J, et al. Metabolic study of iron deposition based on magnetic resonance in patients with nonalcoholic fatty liver disease[J]. Chin J Hepatol, 2023, 31(11): 1204-1208. DOI: 10.3760/cma.j.cn501113-20230902-00086.
[21]
GASSERT F T, KUFNER A, GASSERT F G, et al. MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures[J]. Osteoporos Int, 2022, 33(2): 487-496. DOI: 10.1007/s00198-021-06147-3.
[22]
SCHMEEL F C, LUETKENS J A, FEIßT A, et al. Quantitative evaluation of T2* relaxation times for the differentiation of acute benign and malignant vertebral body fractures[J]. Eur J Radiol, 2018, 108: 59-65. DOI: 10.1016/j.ejrad.2018.09.021.
[23]
LIU Z H, HUANG D G, JIANG Y H, et al. Correlation of R2* with fat fraction and bone mineral density and its role in quantitative assessment of osteoporosis[J]. Eur Radiol, 2023, 33(9): 6001-6008. DOI: 10.1007/s00330-023-09599-9.
[24]
LI G W, XU Z, LI X F, et al. Adding marrow R2 to proton density fat fraction improves the discrimination of osteopenia and osteoporosis in postmenopausal women assessed with 3D FACT sequence[J]. Menopause, 2021, 28(7): 800-806. DOI: 10.1097/GME.0000000000001799.
[25]
LIU D, SUN Y M, HUA J, et al. Correlation among bone iron content, serum ferritin and bone mineral density in patients with thoracolumbar fractures[J]. Chin J Osteoporos Bone Miner Res, 2017, 10(2): 104-109. DOI: 10.3969/j.issn.1674-2591.2017.02.002.
[26]
RUSCHKE S, POKORNEY A, BAUM T, et al. Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI[J]. MAGMA, 2017, 30(5): 449-460. DOI: 10.1007/s10334-017-0617-0.
[27]
CHEN F S, HUANG Y Y, GUO A N, et al. Associations between vertebral bone marrow fat and sagittal spine alignment as assessed by chemical shift-encoding-based water-fat MRI[J/OL]. J Orthop Surg Res, 2023, 18(1): 460 [2024-12-24]. https://pubmed.ncbi.nlm.nih.gov/37370128/. DOI: 10.1186/s13018-023-03944-w.
[28]
MA P Q, YUAN Y S, PENG B, et al. Imaging evaluation of lumbar spine in middle-aged and elderly patients using MR fat quantification technique combined with quantitative computed tomography[J]. Chin J Magn Reson Imag, 2020, 11(12): 1186-1189. DOI: 10.12015/issn.1674-8034.2020.12.024.
[29]
NAVEIRAS O, NARDI V, WENZEL P L, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment[J]. Nature, 2009, 460(7252): 259-263. DOI: 10.1038/nature08099.
[30]
IDILMAN I S, ELCIN YILDIZ A, KARAOSMANOGLU A D, et al. Proton density fat fraction: magnetic resonance imaging applications beyond the liver[J]. Diagn Interv Radiol, 2022, 28(1): 83-91. DOI: 10.5152/dir.2021.21845.
[31]
LIU P F, LIAN Z G, LI K M. Analysis of diagnostic value of lumbar spine fat fraction combined with R2* value for osteoporosis[J]. Chin J CT MRI, 2024, 22(7): 169-171. DOI: 10.3969/j.issn.1672-5131.2024.07.053.

PREV The value of T2WI imaging-based histology in the ability to identify penetrating placenta implantation
NEXT Atypical teratoma in the spinal canal: One case report
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn