Share this content in WeChat
Research progress of magnetic resonance imaging in evaluating regional lymph node metastasis of rectal cancer
FAN Jinghong  ZHANG Shengchao 

Cite this article as: FAN J H, ZHANG S C. Research progress of magnetic resonance imaging in evaluating regional lymph node metastasis of rectal cancer[J]. Chin J Magn Reson Imaging, 2023, 14(12): 187-191. DOI:10.12015/issn.1674-8034.2023.12.034.

[Abstract] Lymph node metastasis is the main mode of rectal cancer metastasis and is closely related to the treatment and prognosis of patients. MRI is essential in the assessment of lymph node status. Metastatic lymph nodes may show abnormal size, shape or internal signals on conventional MRI, but they are highly subjective. Functional MRI techniques such as diffusion-weighted imaging, introvoxel incoherent motion, diffusion kurtosis imaging, dynamic contrast enhanced MRI, magnetic resonance spectroscopy, blood oxygen-dependent MRI, and ultrasmall super paramagnetic iron oxide MRI can be used to evaluate lymph node status more objectively through quantitative measurement. However, at present, these techniques and their parameter values have not formed a unified standard for the evaluation of lymph node status. Imaging omics can excavate more information from images and has a good prospect in the future. This paper summarizes the application of these techniques and their parameters in evaluating regional lymph node status, in order to provide a reliable basis for clinical diagnosis and treatment, and provide a reference direction for future research.
[Keywords] rectal cancer;lymph node;metastasis;magnetic resonance imaging;functional magnetic resonance imaging;radiomics;review

FAN Jinghong1   ZHANG Shengchao2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of MRI, Taiyuan Forth People's Hospital, Taiyuan 030053, China

Corresponding author: ZHANG S C, E-mail:

Conflicts of interest   None.

Received  2023-07-06
Accepted  2023-10-27
DOI: 10.12015/issn.1674-8034.2023.12.034
Cite this article as: FAN J H, ZHANG S C. Research progress of magnetic resonance imaging in evaluating regional lymph node metastasis of rectal cancer[J]. Chin J Magn Reson Imaging, 2023, 14(12): 187-191. DOI:10.12015/issn.1674-8034.2023.12.034.

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
XU H S, ZHAO W Y, GUO W B, et al. Prediction model combining clinical and MR data for diagnosis of lymph node metastasis in patients with rectal cancer[J]. J Magn Reson Imaging, 2021, 53(3): 874-883. DOI: 10.1002/jmri.27369.
WANG S, YE Y J. Research progress of colorectal surgery in 2021 and future prospects[J]. Zhonghua Wei Chang Wai Ke Za Zhi, 2022, 25(1): 22-29. DOI: 10.3760/cma.j.cn441530-20211216-00502.
BATES D D B, HOMSI M E, CHANG K J, et al. MRI for rectal cancer: staging, mrCRM, EMVI, lymph node staging and post-treatment response[J]. Clin Colorectal Cancer, 2022, 21(1): 10-18. DOI: 10.1016/j.clcc.2021.10.007.
LIU D, ZHANG S C. Progress of MRI in predicting of the tumor response after neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Magn Reson Imag, 2022, 13(9): 163-166. DOI: 10.12015/issn.1674-8034.2022.09.039.
WANG P P, DENG C L, WU B. Magnetic resonance imaging-based artificial intelligence model in rectal cancer[J]. World J Gastroenterol, 2021, 27(18): 2122-2130. DOI: 10.3748/wjg.v27.i18.2122.
DEZEN T, ROSSINI R R, SPADIN M D, et al. Accuracy of MRI for diagnosing pelvic and para-aortic lymph node metastasis in cervical cancer[J/OL]. Oncol Rep, 2021, 45(6): 100 [2023-10-13]. DOI: 10.3892/or.2021.8051.
MI M, WENG S S, XU Z H, et al. CSCO guidelines for colorectal cancer version 2023: Updates and insights[J]. Chin J Cancer Res, 2023, 35(3): 233-238. DOI: 10.21147/j.issn.1000-9604.2023.03.02.
ZHUANG Z X, ZHANG Y, WEI M T, et al. Magnetic resonance imaging evaluation of the accuracy of various lymph node staging criteria in rectal cancer: a systematic review and meta-analysis[J]. Front Oncol, 2021, 11: 709070 [2023-10-13]. DOI: 10.3389/fonc.2021.709070.
XIONG Jian, ZHENG Liming, YU Hancheng, et al. Clinical value of 3.0T high resolution MRI in diagnosis of pelvic lateral lymph node metastasis of rectal cancer[J]. J Pract Radiol, 2022, 38(1): 60-63. DOI: 10.3969/j.issn.1002-1671.2022.01.015.
XU M H, SHEN W. Research progress of quantitative assessment of MRI and radiomics for lymph node metastasis of rectal cancer[J]. Oncoradiology, 2021, 30(3): 209-213. DOI: 10.19732/j.cnki.2096-6210.2021.03.012.
CURVO-SEMEDO L. Rectal cancer[J]. Magn Reson Imag Clin N Am, 2020, 28(1): 105-115. DOI: 10.1016/j.mric.2019.09.003.
YANG Y S, LI Y Y, ZHANG Y F, et al. Incremental value of morphologic features on high-resolution MRI in the diagnosis of lymph node metastasis of rectal cancer[J]. Oncoradiology, 2022, 31(3): 296-300. DOI: 10.19732/j.cnki.2096-6210.2022.03.013.
LI S Y, MO Z Y, CHEN X, et al. Morphological predictors for lymph node metastasis on Magnetic Resonance Imaging in stage T1-2 rectal cancer[J]. J Jinan Univ Nat Sci Med Ed, 2023, 44(2): 219-226. DOI: 10.11778/j.jdxb.20220372.
PIKŪNIENĖ I, SALADŽINSKAS Ž, BASEVIČIUS A, et al. MRI evaluation of rectal cancer lymph node staging using apparent diffusion coefficient[J/OL]. Cureus, 2023, 15(9): e45002 [2023-10-13]. DOI: 10.7759/cureus.45002.
OSMAN M, IBRAHIM S H, GHONEIM S M M, et al. Role of apparent diffusion coefficient in assessment of loco-regional nodal spread in cancer rectum: correlative study with histopathological findings[J]. Egypt J Radiol Nucl Med, 2023, 54: 1-8. DOI: 10.1186/s43055-023-00995-1.
GE Y X, HU S D, WANG Z, et al. Feasibility and reproducibility of T2 mapping and DWI for identifying malignant lymph nodes in rectal cancer[J]. Eur Radiol, 2021, 31(5): 3347-3354. DOI: 10.1007/s00330-020-07359-7.
XU M H, YIN J Y, SHEN W, et al. Diagnostic value of diffusion-weighted imaging based on monoexponential and biexponential model in the diagnosis of metastatic lymph node in rectal cancer[J]. Radiol Pract, 2020, 35(8): 1042-1047. DOI: 10.13609/j.cnki.1000-0313.2020.08.017.
ZHAO L, ZHANG H M, ZHAO X M. Research progress of quantitative magnetic resonance imaging in preoperative evaluation of rectal cancer[J]. Radiol Pract, 2021, 36(10): 1312-1315. DOI: 10.13609/j.cnki.1000-0313.2021.10.022.
IIMA M. Perfusion-driven intravoxel incoherent motion (IVIM) MRI in oncology: applications, challenges, and future trends[J]. Magn Reson Med Sci, 2021, 20(2): 125-138. DOI: 10.2463/mrms.rev.2019-0124.
YANG X Y, CHEN Y, WEN Z Q, et al. Non-invasive MR assessment of the microstructure and microcirculation in regional lymph nodes for rectal cancer: a study of intravoxel incoherent motion imaging[J/OL]. Cancer Imaging, 2019, 19(1): 70 [2023-10-13]. DOI: 10.1186/s40644-019-0255-z.
MEYER H J, HÖHN A K, WOIDACKI K, et al. Associations between IVIM histogram parameters and histopathology in rectal cancer[J]. Magn Reson Imaging, 2021, 77: 21-27. DOI: 10.1016/j.mri.2020.12.008.
YU X P, WEN L, HOU J, et al. Discrimination between metastatic and nonmetastatic mesorectal lymph nodes in rectal cancer using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging[J]. Acad Radiol, 2016, 23(4): 479-485. DOI: 10.1016/j.acra.2015.12.013.
LONG L, ZHANG H P, HE X J, et al. Value of intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic from nonmetastatic mesorectal lymph nodes with different short-axis diameters in rectal cancer[J]. J Cancer Res Ther, 2019, 15(7): 1508-1515. DOI: 10.4103/jcrt.JCRT_76_19.
TANG C, LU G X, XU J M, et al. Diffusion kurtosis imaging and MRI-detected extramural venous invasion in rectal cancer: correlation with clinicopathological prognostic factors[J]. Abdom Radiol, 2023, 48(3): 844-854. DOI: 10.1007/s00261-022-03782-0.
YUAN J, GONG Z G, LIU K, et al. Correlation between diffusion kurtosis and intravoxel incoherent motion derived (IVIM) parameters and tumor tissue composition in rectal cancer: a pilot study[J]. Abdom Radiol, 2022, 47(4): 1223-1231. DOI: 10.1007/s00261-022-03426-3.
WEN Z Q, CHEN Y, YANG X Y, et al. Application of magnetic resonance diffusion kurtosis imaging for distinguishing histopathologic subtypes and grades of rectal carcinoma[J/OL]. Cancer Imaging, 2019, 19(1): 8 [2023-10-13]. DOI: 10.1186/s40644-019-0192-x.
WANG C, YU J, LU M, et al. Diagnostic efficiency of diffusion sequences and a clinical nomogram for detecting lymph node metastases from rectal cancer[J]. Acad Radiol, 2022, 29(9): 1287-1295. DOI: 10.1016/j.acra.2021.10.009.
YU J, DAI X, ZOU H H, et al. Diffusion kurtosis imaging in identifying the malignancy of lymph nodes during the primary staging of rectal cancer[J]. Colorectal Dis, 2018, 20(2): 116-125. DOI: 10.1111/codi.13835.
ARIAN A, TAHER H J, SUHAIL NAJM ALAREER H, et al. Value of conventional MRI, DCE-MRI, and DWI-MRI in the discrimination of metastatic from non-metastatic lymph nodes in rectal cancer: a systematic review and meta-analysis study[J]. Asian Pac J Cancer Prev, 2023, 24(2): 401-410. DOI: 10.31557/APJCP.2023.24.2.401.
WANG Q Z, CHEN Y Y, ZHANG E L, et al. Advances in dynamic contrast-enhanced magnetic resonance imaging in predicting tumor prognosis[J]. Chin J Magn Reson Imag, 2019, 10(7): 556-560. DOI: 10.12015/issn.1674-8034.2019.07.015.
YANG X Y, CHEN Y, WEN Z Q, et al. Role of quantitative dynamic contrast-enhanced MRI in evaluating regional lymph nodes with a short-axis diameter of less than 5 mm in rectal cancer[J]. AJR Am J Roentgenol, 2019, 212(1): 77-83. DOI: 10.2214/AJR.18.19866.
KANG L Q, GUO S Y, ZHAO M, et al. Diagnostic value of the combination of IVIM-DWI and DCE-MRI in pelvic lymphatic metastasis of rectal cancer[J]. Chin J Magn Reson Imag, 2019, 10(8): 583-588. DOI: 10.12015/issn.1674-8034.2019.08.005.
MA X M, HUANG G, HE J W, et al. Pathologic comparison analysis of rectal cancer lymph node metastasis with dynamic contrast-enhanced magnetic resonance imaging[J]. J Clin Radiol, 2018, 37(1): 94-99. DOI: 10.13437/j.cnki.jcr.2018.01.026.
XIE Q, CHEN H X, DU L, et al. Detection of the drug resistance of human colon cancer in mice with proton magnetic resonance spectroscopy[J]. Chin J Magn Reson Imag, 2019, 10(6): 435-439. DOI: 10.12015/issn.1674-8034.2019.06.008.
KIM M J, LEE S J, LEE J H, et al. Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy[J]. Magn Reson Imaging, 2012, 30(6): 848-853. DOI: 10.1016/j.mri.2012.02.013.
WANG H J, WANG L, ZHANG H L, et al. ¹H NMR-based metabolic profiling of human rectal cancer tissue[J/OL]. Mol Cancer, 2013, 12(1): 121 [2023-10-13]. DOI: 10.1186/1476-4598-12-121.
HU S, PENG Y, WANG Q S, et al. T2*-weighted imaging and diffusion kurtosis imaging (DKI) of rectal cancer: correlation with clinical histopathologic prognostic factors[J]. Abdom Radiol, 2022, 47(2): 517-529. DOI: 10.1007/s00261-021-03369-1.
ATKIN G, TAYLOR N J, DALEY F M, et al. Dynamic contrast-enhanced magnetic resonance imaging is a poor measure of rectal cancer angiogenesis[J]. Br J Surg, 2006, 93(8): 992-1000. DOI: 10.1002/bjs.5352.
DRIESSEN D A J J, ZÁMECNIK P, DIJKEMA T, et al. High-accuracy nodal staging of head and neck cancer with USPIO-enhanced MRI: a new reading algorithm based on node-to-node matched histopathology[J]. Invest Radiol, 2022, 57(12): 810-818. DOI: 10.1097/RLI.0000000000000902.
STIJNS R C H, PHILIPS B W J, NAGTEGAAL I D, et al. USPIO-enhanced MRI of lymph nodes in rectal cancer: a node-to-node comparison with histopathology[J/OL]. Eur J Radiol, 2021, 138: 109636 [2023-10-13]. DOI: 10.1016/j.ejrad.2021.109636.
SCAPICCHIO C, GABELLONI M, BARUCCI A, et al. A deep look into radiomics[J]. Radiol Med, 2021, 126(10): 1296-1311. DOI: 10.1007/s11547-021-01389-x.
BENEDETTI G, MORI M, PANZERI M M, et al. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors[J]. Radiol Med, 2021, 126(6): 745-760. DOI: 10.1007/s11547-021-01333-z.
QIN H, QUE Q, LIN P, et al. Magnetic resonance imaging (MRI) radiomics of papillary thyroid cancer (PTC): a comparison of predictive performance of multiple classifiers modeling to identify cervical lymph node metastases before surgery[J]. Radiol Med, 2021, 126(10): 1312-1327. DOI: 10.1007/s11547-021-01393-1.
LI Q Y, ZHANG X Y, SUN Y S. Application of radiomics and deep learning in evaluating lymph node status of rectal cancer[J]. Chin J Radiol, 2023, 57(2): 231-234. DOI: 10.3760/cma.j.cn112149-20211221-01125.
LI J, ZHOU Y, WANG P, et al. Deep transfer learning based on magnetic resonance imaging can improve the diagnosis of lymph node metastasis in patients with rectal cancer[J]. Quant Imaging Med Surg, 2021, 11(6): 2477-2485. DOI: 10.21037/qims-20-525.
LI G Q, KE W W, SUN X L, et al. Predictive value of MRI T2WI texture analysis for lymph node metastasis in rectal cancer[J]. Chin J Magn Reson Imag, 2022, 13(7): 42-47. DOI: 10.12015/issn.1674-8034.2022.07.008.
ATRE I D, EURBOONYANUN K, NODA Y, et al. Utility of texture analysis on T2-weighted MR for differentiating tumor deposits from mesorectal nodes in rectal cancer patients, in a retrospective cohort[J]. Abdom Radiol, 2021, 46(2): 459-468. DOI: 10.1007/s00261-020-02653-w.

PREV Research progress on MRI radiomics in the progression, recurrence and prognosis prediction of hepatocellular carcinoma
NEXT Application progress of MRI in the diagnosis and treatment of multiple myeloma

Tel & Fax: +8610-67113815    E-mail: