Share this content in WeChat
Research progress of multi-parameter MRI in the evaluation of treatment response and predicting the prognosis of nasopharyngeal carcinoma
REN Huanhuan  LIU Daihong  HUANG Junhao  ZHANG Jiuquan 

Cite this article as: REN H H, LIU D H, HUANG J H, et al. Research progress of multi-parameter MRI in the evaluation of treatment response and predicting the prognosis of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(12): 156-160. DOI:10.12015/issn.1674-8034.2023.12.028.

[Abstract] Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors of the head and neck. The research challenge in clinical practice is how to rapidly and precisely monitor treatment responses and identify NPC patients with various risks of recurrence, progression, or metastasis. MRI can show the size, morphology, blood flow, and components of tumors in different sequences. The semantic features of images or artificial intelligence can be used to evaluate the performance and prognosis in NPC patients. This paper reviews the research progress of multi-parameter MRI in evaluating the treatment response and predicting prognosis of NPC, to provide a reference and some interesting ideas for future research.
[Keywords] nasopharyngeal cancer;magnetic resonance imaging;multi-parameter;treatment response;prognosis prediction

REN Huanhuan   LIU Daihong   HUANG Junhao   ZHANG Jiuquan*  

Department of Radiology, Chongqing University Cancer Hospital, Chongqing 400030, China

Corresponding author: ZHANG J Q, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82371937, 82071883); Chongqing Natural Science Foundation (No. cstc2021jcyj-msxmX0313).
Received  2023-09-19
Accepted  2023-11-29
DOI: 10.12015/issn.1674-8034.2023.12.028
Cite this article as: REN H H, LIU D H, HUANG J H, et al. Research progress of multi-parameter MRI in the evaluation of treatment response and predicting the prognosis of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(12): 156-160. DOI:10.12015/issn.1674-8034.2023.12.028.

ZHANG B, LUO C, ZHANG X, et al. Integrative Scoring System for Survival Prediction in Patients With Locally Advanced Nasopharyngeal Carcinoma: A Retrospective Multicenter Study[J/OL]. JCO Clin Cancer Inform, 2023, 7: e2200015 [2023-09-19]. DOI: 10.1200/CCI.22.00015.
LI Y, TANG L Q, LIU L T, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma in children and adolescents: a matched cohort analysis[J]. Cancer Res Treat, 2018, 50(4): 1304-1315. DOI: 10.4143/crt.2017.463.
RIBASSIN-MAJED L, MARGUET S, LEE A W M, et al. What is the best treatment of locally advanced nasopharyngeal carcinoma? an individual patient data network meta-analysis[J]. J Clin Oncol, 2017, 35(5): 498-505. DOI: 10.1200/JCO.2016.67.4119.
ZHANG B, LI M M, CHEN W H, et al. Association of Chemoradiotherapy Regimens and Survival Among Patients With Nasopharyngeal Carcinoma: A Systematic Review and Meta-analysis[J/OL]. JAMA Netw Open, 2019, 2(10): e1913619 [2023-09-19]. DOI: 10.1001/jamanetworkopen.2019.13619.
LI M M, ZHANG B, CHEN Q Y, et al. Concurrent chemoradiotherapy with additional chemotherapy for nasopharyngeal carcinoma: A pooled analysis of propensity score-matching studies[J]. Head Neck, 2021, 43(6): 1912-1927. DOI: 10.1002/hed.26664.
FEI Z D, XU T, QIU X F, et al. Significance of boost dose for T4 nasopharyngeal carcinoma with residual primary lesion after intensity-modulated radiotherapy[J]. J Cancer Res Clin Oncol, 2021, 147(7): 2047-2055. DOI: 10.1007/s00432-020-03479-1.
ZHANG S Q, PAN S M, LIANG S X, et al. Research status and prospects of biomarkers for nasopharyngeal carcinoma in the era of high-throughput omics (Review)[J/OL]. Int J Oncol, 2021, 58(4): 9 [2023-09-19]. DOI: 10.3892/ijo.2021.5188.
NISHINO M, JAGANNATHAN J P, RAMAIYA N H, et al. Revised RECIST guideline version 1.1: what oncologists want to know and what radiologists need to know[J]. AJR Am J Roentgenol, 2010, 195(2): 281-289. DOI: 10.2214/AJR.09.4110.
LIU J, MAO Y, LI Z J, et al. Use of texture analysis based on contrast-enhanced MRI to predict treatment response to chemoradiotherapy in nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2016, 44(2): 445-455. DOI: 10.1002/jmri.25156.
KING A D. MR imaging of nasopharyngeal carcinoma[J]. Magn Reson Imaging Clin N Am, 2022, 30(1): 19-33. DOI: 10.1016/j.mric.2021.06.015.
YANG X, WU J, CHEN X. Application of Artificial Intelligence to the Diagnosis and Therapy of Nasopharyngeal Carcinoma[J/OL]. J Clin Med, 2023, 12(9): 3077 [2023-09-19]. DOI: 10.3390/jcm12093077.
SUN Y, LI W F, CHEN N Y, et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial[J]. Lancet Oncol, 2016, 17(11): 1509-1520. DOI: 10.1016/S1470-2045(16)30410-7.
PIAO Y F, JIANG C E, WANG L, et al. The usefulness of pretreatment MR-based radiomics on early response of neoadjuvant chemotherapy in patients with locally advanced nasopharyngeal carcinoma[J]. Oncol Res, 2021, 28(6): 605-613. DOI: 10.3727/096504020X16022401878096.
JIANG Y T, LIANG Z G, CHEN K H, et al. A dynamic nomogram combining tumor stage and magnetic resonance imaging features to predict the response to induction chemotherapy in locally advanced nasopharyngeal carcinoma[J]. Eur Radiol, 2023, 33(3): 2171-2184. DOI: 10.1007/s00330-022-09201-8.
LIAO H, CHEN X B, LU S L, et al. MRI-based back propagation neural network model as a powerful tool for predicting the response to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma[J]. J Magn Reson Imaging, 2022, 56(2): 547-559. DOI: 10.1002/jmri.28047.
ZHAO D W, FAN W J, MENG L L, et al. Comparison of the pre-treatment functional MRI metrics' efficacy in predicting Locoregionally advanced nasopharyngeal carcinoma response to induction chemotherapy[J/OL]. Cancer Imaging, 2021, 21(1): 59 [2023-09-19]. DOI: 10.1186/s40644-021-00428-0.
ZHANG Y, CHEN L, HU G Q, et al. Gemcitabine and cisplatin induction chemotherapy in nasopharyngeal carcinoma[J]. N Engl J Med, 2019, 381(12): 1124-1135. DOI: 10.1056/NEJMoa1905287.
LIU S L, SUN X S, YAN J J, et al. Optimal cumulative cisplatin dose in nasopharyngeal carcinoma patients based on induction chemotherapy response[J/OL]. Radiother Oncol, 2019, 137: 83-94 [2023-09-19]. DOI: 10.1016/j.radonc.2019.04.020.
DAI G M, WU W Y, FU L L, et al. Radiomics analysis based on IVIM-DWI quantitative parameters to predict the short-term therapeutic effect of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, 2023, 14(9): 56-62, 69. DOI: 10.12015/issn.1674-8034.2023.09.010.
GUO Y, DAI G, XIONG X, et al. Intravoxel incoherent motion radiomics nomogram for predicting tumor treatment responses in nasopharyngeal carcinoma[J/OL]. Transl Oncol, 2023, 31: 101648 [2023-09-19]. DOI: 10.1016/j.tranon.2023.101648.
LIU Z, ZOU L, YANG Q, et al. Baseline Amide Proton Transfer Imaging at 3T Fails to Predict Early Response to Induction Chemotherapy in Nasopharyngeal Carcinoma [J/OL]. Front Oncol, 2022, 12: 822756 [2023-09-19]. DOI: 10.3389/fonc.2022.822756.
SUN Z Q, HU S D, XUE Q, et al. Can 3D pseudo-continuous arterial spin labeling perfusion imaging be applied to predict early response to chemoradiotherapy in patients with advanced nasopharyngeal carcinoma?[J/OL]. Radiother Oncol, 2021, 160: 97-106 [2023-09-19]. DOI: 10.1016/j.radonc.2021.04.017.
XU H, LIU J, HUANG Y, et al. MRI-based radiomics as response predictor to radiochemotherapy for metastatic cervical lymph node in nasopharyngeal carcinoma[J/OL]. Br J Radiol, 2021, 94(1122): 20201212 [2023-09-19]. DOI: 10.1259/bjr.20201212.
TANGYOOSUK T, LERTBUTSAYANUKUL C, JITTAPIROMSAK N. Utility of diffusion-weighted magnetic resonance imaging in predicting the treatment response of nasopharyngeal carcinoma[J]. Neuroradiol J, 2022, 35(4): 477-485. DOI: 10.1177/19714009211055191.
LIU J, ZHU J, WANG Y, et al. Arterial spin labeling of nasopharyngeal carcinoma shows early therapy response[J/OL]. Insights Imaging, 2022, 13(1): 114 [2023-09-19]. DOI: 10.1186/s13244-022-01248-x.
CAO X, SONG J, XU J, et al. Tumor Blood Flow Is a Predictor of Radiotherapy Response in Patients With Nasopharyngeal Carcinoma[J/OL]. Front Oncol, 2021, 11: 567954 [2023-09-19]. DOI: 10.3389/fonc.2021.567954.
XI Y, GE X, JI H, et al. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study[J/OL]. Front Oncol, 2022, 12: 824509 [2023-09-19]. DOI: 10.3389/fonc.2022.824509.
YOU R, ZOU X, WANG S L, et al. New surgical staging system for patients with recurrent nasopharyngeal carcinoma based on the AJCC/UICC rTNM classification system[J]. Eur J Cancer, 2015, 51(13): 1771-1779. DOI: 10.1016/j.ejca.2015.05.014.
ZUO X F, MENG P X, BAO Y X, et al. Cell cycle dysregulation with overexpression of KIF2C/MCAK is a critical event in nasopharyngeal carcinoma[J]. Genes Dis, 2023, 10(1): 212-227. DOI: 10.1016/j.gendis.2021.05.003.
QIU W, ZHONG X, JIANG J, et al. Prognostic significance of cervical radiologic carotid artery invasion by lymph node on magnetic resonance imaging in nasopharyngeal carcinoma[J/OL]. Cancer Imaging, 2023, 23(1): 26 [2023-09-19]. DOI: 10.1186/s40644-023-00544-z.
SUN X S, XIAO Z W, LIU S L, et al. Nasopharyngeal necrosis contributes to overall survival in nasopharyngeal carcinoma without distant metastasis: a comprehensive nomogram model[J]. Eur Radiol, 2023, 33(5): 3682-3692. DOI: 10.1007/s00330-023-09431-4.
QAMAR S, KING A D, AI Q H, et al. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma[J]. Eur Radiol, 2020, 30(11): 6339-6347. DOI: 10.1007/s00330-020-06985-5.
ZHAO L N, GONG J, XI Y B, et al. MRI-based radiomics nomogram may predict the response to induction chemotherapy and survival in locally advanced nasopharyngeal carcinoma[J]. Eur Radiol, 2020, 30(1): 537-546. DOI: 10.1007/s00330-019-06211-x.
BAO D, LIU Z, GENG Y, et al. Baseline MRI-based radiomics model assisted predicting disease progression in nasopharyngeal carcinoma patients with complete response after treatment[J/OL]. Cancer Imaging, 2022, 22(1): 10 [2023-09-19]. DOI: 10.1186/s40644-022-00448-4.
LI H J, LIU L Z, HUANG Y, et al. Establishment and Validation of a Novel MRI Radiomics Feature-Based Prognostic Model to Predict Distant Metastasis in Endemic Nasopharyngeal Carcinoma[J/OL]. Front Oncol, 2022, 12: 794975 [2023-09-19]. DOI: 10.3389/fonc.2022.794975.
MAO J J, FANG J, DUAN X H, et al. Predictive value of pretreatment MRI texture analysis in patients with primary nasopharyngeal carcinoma[J]. Eur Radiol, 2019, 29(8): 4105-4113. DOI: 10.1007/s00330-018-5961-6.
LI Q, WANG T, HUANG Y, et al. Whole-Tumor Histogram and Texture Imaging Features on Magnetic Resonance Imaging Combined With Epstein-Barr Virus Status to Predict Disease Progression in Patients With Nasopharyngeal Carcinoma[J/OL]. Front Oncol, 2021, 11: 610804 [2023-09-19]. DOI: 10.3389/fonc.2021.610804.
KIM M J, CHOI Y, SUNG Y E, et al. Early risk-assessment of patients with nasopharyngeal carcinoma: the added prognostic value of MR-based radiomics[J/OL]. Transl Oncol, 2021, 14(10): 101180 [2023-09-19]. DOI: 10.1016/j.tranon.2021.101180.
YANG F, LI X L, LI Y J, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors in nasopharyngeal carcinoma[J]. Eur Radiol, 2023, 33(8): 5344-5354. DOI: 10.1007/s00330-023-09553-9.
LIU Y, ZHANG J H, WANG J B, et al. MRI-identified multidimensional nodal features predict survival and concurrent chemotherapy benefit for stage Ⅱ nasopharyngeal carcinoma[J]. Radiol Oncol, 2022, 56(4): 479-487. DOI: 10.2478/raon-2022-0047.
BOLOGNA M, CORINO V, CALARESO G, et al. Baseline MRI-Radiomics Can Predict Overall Survival in Non-Endemic EBV-Related Nasopharyngeal Carcinoma Patients[J/OL]. Cancers (Basel), 2020, 12(10): 2958 [2023-09-19]. DOI: 10.3390/cancers12102958.
CAO X, CHEN X, LIN Z C, et al. Add-on individualizing prediction of nasopharyngeal carcinoma using deep-learning based on MRI: A multicentre, validation study[J/OL]. iScience, 2022, 25(9): 104841 [2023-09-19]. DOI: 10.1016/j.isci.2022.104841.
YANG K X, TIAN J F, ZHANG B, et al. A multidimensional nomogram combining overall stage, dose volume histogram parameters and radiomics to predict progression-free survival in patients with locoregionally advanced nasopharyngeal carcinoma[J/OL]. Oral Oncol, 2019, 98: 85-91 [2023-09-19]. DOI: 10.1016/j.oraloncology.2019.09.022.
ZHANG Q H, WU G, YANG Q Y, et al. Survival rate prediction of nasopharyngeal carcinoma patients based on MRI and gene expression using a deep neural network[J]. Cancer Sci, 2023, 114(4): 1596-1605. DOI: 10.1111/cas.15704.
GAO Y, MAO Y T, LU S H, et al. Magnetic resonance imaging-based radiogenomics analysis for predicting prognosis and gene expression profile in advanced nasopharyngeal carcinoma[J]. Head Neck, 2021, 43(12): 3730-3742. DOI: 10.1002/hed.26867.
WANG Y, DONG T, WANG P, et al. LINC00922 regulates epithelial-mesenchymal transition, invasive and migratory capacities in breast cancer through promoting NKD2 methylation[J/OL]. Cell Signal, 2021, 77: 109808 [2023-09-19]. DOI: 10.1016/j.cellsig.2020.109808
ASIMAKOPOULOU A, VUCUR M, LUEDDE T, et al. Perilipin 5 and Lipocalin 2 Expression in Hepatocellular Carcinoma[J/OL]. Cancers (Basel), 2019, 11(3): 385 [2023-09-19]. DOI: 10.3390/cancers11030385
SHAO Q, WANG F A-O X, XU Y, et al. CDKL2 Is Associated with HER2 Status and Overall Survival in Gastric Cancer: Comparative Analysis of CDKL2 Protein Expression and Gene Copy Number[J/OL]. Biomed Res Int, 2020, 2020: 1712723 [2023-09-19]. DOI: 10.1155/2020/1712723.
SUN M X, ZHAO M J, ZHAO L H, et al. A nomogram model based on pre-treatment and post-treatment MR imaging radiomics signatures: application to predict progression-free survival for nasopharyngeal carcinoma[J/OL]. Radiat Oncol, 2023, 18(1): 67 [2023-09-19]. DOI: 10.1186/s13014-023-02257-w.
LIU L T, GUO S S, LI H, et al. Percent change in apparent diffusion coefficient and plasma EBV DNA after induction chemotherapy identifies distinct prognostic response phenotypes in advanced nasopharyngeal carcinoma[J/OL]. BMC Cancer, 2021, 21(1): 1320 [2023-09-19]. DOI: 10.1186/s12885-021-09063-1.
JIANG Y T, CHEN K H, LIANG Z G, et al. A nomogram based on tumor response to induction chemotherapy may predict survival in locoregionally advanced nasopharyngeal carcinoma[J]. Head Neck, 2022, 44(6): 1301-1312. DOI: 10.1002/hed.27020.
XIANG Z Z, LIU F, YAN R N, et al. The prognostic value of volumetric reduction of the target lesions after induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma[J]. Head Neck, 2019, 41(6): 1863-1872. DOI: 10.1002/hed.25620.
LU Z J, LIU T, LIN J Y, et al. Identifying the prognostic value of MRI-based tumor response and predicting the risk of radio-resistance in re-radiotherapy for locally recurrent nasopharyngeal carcinoma[J]. Radiother Oncol, 2023, 183: 109635 [2023-09-19]. DOI: 10.1016/j.radonc.2023.109635.
LIU G Y, LI W Z, PENG K Q, et al. Prognostic value of early radiological response to first-line platinum-containing chemotherapy in patients with metastatic nasopharyngeal carcinoma[J]. Cancer Med, 2020, 9(3): 920-930. DOI: 10.1002/cam4.2751.
HE W Z, JIANG C, LIU L L, et al. Association of body composition with survival and inflammatory responses in patients with non-metastatic nasopharyngeal cancer[J/OL]. Oral Oncol, 2020, 108: 104771 [2023-09-19]. DOI: 10.1016/j.oraloncology.2020.104771.

PREV Research progress of diffusion tensor imaging in spinal cord injury
NEXT Research progress of intravoxel incoherent motion and dynamic contrast-enhanced MRI in radiotherapy response prediction of nasopharyngeal carcinoma

Tel & Fax: +8610-67113815    E-mail: