Share:
Share this content in WeChat
X
Review
Research progress of diffusion tensor imaging in spinal cord injury
QI Qunya  CHEN Nan 

Cite this article as: QI Q Y, CHEN N. Research progress of diffusion tensor imaging in spinal cord injury[J]. Chin J Magn Reson Imaging, 2023, 14(12): 151-155. DOI:10.12015/issn.1674-8034.2023.12.027.


[Abstract] Spinal cord injury (SCI) is a disease with high disability and mortality rates. Conventional spinal cord MRI can be used to evaluate macrostructural changes caused by edema and hemorrhage after SCI, but it cannot clearly show the changes in microstructures such as axons and myelin after injury. Therefore, it is difficult to use conventional spinal cord MRI to objectively judge the degree and prognosis of SCI. Diffusion tensor imaging (DTI) is a non-invasive MRI technique that can reflect the changes in microstructures after SCI using the diffusion information of water molecules in tissues. The quantitative indicators and diffusion tensor tractography (DTT) can help to judge the degree of injury and the prognosis of patients, providing more objective reference information for clinical treatment decisions. This article reviews the application of DTI in SCI, aiming to understand the research status of DTI in SCI and provide reference for the research and development of DTI in SCI in the future.
[Keywords] spinal cord;myelopathy;spinal cord injury;magnetic resonance imaging;diffusion tensor imaging;diffusion tensor tractography

QI Qunya1, 2   CHEN Nan1, 2*  

1 Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

2 Beijing Key Lab of MRI and Brain Informatics, Beijing 100053, China

Corresponding author: CHEN N, E-mail: chenzen8057@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81271556, 81871339).
Received  2023-07-07
Accepted  2023-12-05
DOI: 10.12015/issn.1674-8034.2023.12.027
Cite this article as: QI Q Y, CHEN N. Research progress of diffusion tensor imaging in spinal cord injury[J]. Chin J Magn Reson Imaging, 2023, 14(12): 151-155. DOI:10.12015/issn.1674-8034.2023.12.027.

[1]
ANJUM A, YAZID M D, FAUZI DAUD M, et al. Spinal cord injury: Pathophysiology, multimolecular interactions, and underlying recovery mechanisms[J/OL]. Int J Mol Sci, 2020, 21(20): 7533 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/33066029. DOI: 10.3390/ijms21207533.
[2]
SHANG S, WANG C, WANG W, et al. Sex-related differences in epidemiology, treatment and economic burden of traumatic spinal cord injury in China (2013-2018)[J/OL]. Spine (Phila Pa 1976), 2023, 48(17): E288-E301 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/37040465. DOI: 10.1097/BRS.0000000000004669.
[3]
NANDA G, JAIN P, SUMAN A, et al. Role of diffusion tensor imaging and tractography in spinal cord injury[J/OL]. J Clin Orthop Trauma, 2022, 33: 101997 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/36118562. DOI: 10.1016/j.jcot.2022.101997.
[4]
KAMAGATA K, ANDICA C, KATO A, et al. Diffusion magnetic resonance imaging-based biomarkers for neurodegenerative diseases[J/OL]. Int J Mol Sci, 2021, 22(10): 5216 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/34069159. DOI: 10.3390/ijms22105216.
[5]
MARTUCCI M, RUSSO R, SCHIMPERNA F, et al. Magnetic resonance imaging of primary adult brain tumors: State of the art and future perspectives[J/OL]. Biomedicines, 2023, 11(2): 364 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/36830900. DOI: 10.3390/biomedicines11020364.
[6]
GRANT M, LIU J, WINTERMARK M, et al. Current state of diffusion-weighted imaging and diffusion tensor imaging for traumatic brain injury prognostication[J]. Neuroimaging Clin N Am, 2023, 33(2): 279-297. DOI: 10.1016/j.nic.2023.01.004.
[7]
TAE W S, HAM B J, PYUN S B, et al. Current clinical applications of diffusion-tensor imaging in neurological disorders[J]. J Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
[8]
MARTÍN NOGUEROL T, BAROUSSE R, AMRHEIN T J, et al. Optimizing diffusion-tensor imaging acquisition for spinal cord assessment: Physical basis and technical adjustments[J]. Radiographics, 2020, 40(2): 403-427. DOI: 10.1148/rg.2020190058.
[9]
ZANINOVICH O A, AVILA M J, KAY M, et al. The role of diffusion tensor imaging in the diagnosis, prognosis, and assessment of recovery and treatment of spinal cord injury: a systematic review[J/OL]. Neurosurg Focus, 2019, 46(3): E7 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/30835681. DOI: 10.3171/2019.1.FOCUS18591.
[10]
VEDANTAM A, JIRJIS M B, SCHMIT B D, et al. Diffusion tensor imaging of the spinal cord: insights from animal and human studies[J]. Neurosurgery, 2014, 74(1): 1-8. DOI: 10.1227/NEU.0000000000000171.
[11]
CUI Y N, MIAO Y W. Research progress of DTI quantification in myelopathy[J]. Chin J Magn Reson Imaging, 2021, 12(7):102-104, 109. DOI: 10.12015/issn.1674-8034.2021.07.024.
[12]
CHENG S J, TSAI P H, LEE Y T, et al. Diffusion tensor imaging of the spinal cord[J]. Magn Reson Imaging Clin N Am, 2021, 29(2): 195-204. DOI: 10.1016/j.mric.2021.02.002.
[13]
ZHU F, ZENG L, GUI S, et al. The role of diffusion tensor imaging and diffusion tensor tractography in the assessment of acute traumatic thoracolumbar spinal cord injury[J/OL]. World Neurosurg, 2021, 150: e23-e30 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/33561552. DOI: 10.1016/j.wneu.2021.01.146.
[14]
DE LEENER B, LÉVY S, DUPONT S M, et al. SCT: Spinal cord toolbox, an open-source software for processing spinal cord MRI data[J]. Neuroimage, 2017, 145(Pt A): 24-43. DOI: 10.1016/j.neuroimage.2016.10.009.
[15]
BRANDER A, KOSKINEN E, LUOTO T M, et al. Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI[J]. Acta Radiol, 2014, 55(4): 478-485. DOI: 10.1177/0284185113499752.
[16]
ALIZADEH M, FISHER J, SAKSENA S, et al. Age related diffusion and tractography changes in typically developing pediatric cervical and thoracic spinal cord[J]. Neuroimage Clin, 2018, 18: 784-792. DOI: 10.1016/j.nicl.2018.03.014.
[17]
KAUSHAL M, SHABANI S, BUDDE M, et al. Diffusion tensor imaging in acute spinal cord injury: A review of animal and human studies[J]. J Neurotrauma, 2019, 36(15): 2279-2286. DOI: 10.1089/neu.2019.6379.
[18]
MOSSA-BASHA M, PETERSON D J, HIPPE D S, et al. Segmented quantitative diffusion tensor imaging evaluation of acute traumatic cervical spinal cord injury[J/OL]. Br J Radiol, 2021, 94(1118): 20201000 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/33180553. DOI: 10.1259/bjr.20201000.
[19]
D'SOUZA M M, CHOUDHARY A, POONIA M, et al. Diffusion tensor MR imaging in spinal cord injury[J]. Injury, 2017, 48(4): 880-884. DOI: 10.1016/j.injury.2017.02.016.
[20]
BUDDE M D, SKINNER N P. Diffusion MRI in acute nervous system injury[J]. J Magn Reson, 2018, 292: 137-148. DOI: 10.1016/j.jmr.2018.04.016.
[21]
CHEN B, TAN Q, ZHAO W, et al. Diffusion tensor imaging and electrophysiology as robust assays to evaluate the severity of acute spinal cord injury in rats[J/OL]. BMC Neurol, 2020, 20(1): 236 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/32517723/. DOI: 10.1186/s12883-020-01778-1.
[22]
ALIZADEH A, DYCK S M, KARIMI-ABDOLREZAEE S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms[J/OL]. Front Neurol, 2019, 10: 282 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/30967837/. DOI: 10.3389/fneur.2019.00282.
[23]
LEE S Y, SCHMIT B D, KURPAD S N, et al. Acute magnetic resonance imaging predictors of chronic motor function and tissue sparing in rat cervical spinal cord injury[J]. J Neurotrauma, 2022, 39(23-24): 1727-1740. DOI: 10.1089/neu.2022.0034.
[24]
ROBERTS T T, LEONARD G R, CEPELA D J. Classifications in brief: American spinal injury association (ASIA) impairment scale[J]. Clin Orthop Relat Res, 2017, 475(5): 1499-1504. DOI: 10.1007/s11999-016-5133-4.
[25]
VEDANTAM A, ECKARDT G, WANG M C, et al. Clinical correlates of high cervical fractional anisotropy in acute cervical spinal cord injury[J]. World Neurosurg, 2015, 83(5): 824-828. DOI: 10.1016/j.wneu.2013.09.017.
[26]
SHABANI S, KAUSHAL M, BUDDE M, et al. Correlation of magnetic resonance diffusion tensor imaging parameters with American Spinal Injury Association score for prognostication and long-term outcomes[J/OL]. Neurosurg Focus, 2019, 46(3): E2 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/30835673. DOI: 10.3171/2018.12.FOCUS18595.
[27]
COSTANZO R, BRUNASSO L, PAOLINI F, et al. Spinal tractography as a potential prognostic tool in spinal cord injury: A systematic review[J]. World Neurosurg, 2022, 164: 25-32. DOI: 10.1016/j.wneu.2022.04.103.
[28]
SHANMUGANATHAN K, ZHUO J, CHEN H H, et al. Diffusion tensor imaging parameter obtained during acute blunt cervical spinal cord injury in predicting long-term outcome[J]. J Neurotrauma, 2017, 34(21): 2964-2971. DOI: 10.1089/neu.2016.4901.
[29]
SHANMUGANATHAN K, ZHUO J, BODANAPALLY U K, et al. Comparison of acute diffusion tensor imaging and conventional magnetic resonance parameters in predicting long-term outcome after blunt cervical spinal cord injury[J]. J Neurotrauma, 2020, 37(3): 458-465. DOI: 10.1089/neu.2019.6394.
[30]
POPLAWSKI M M, ALIZADEH M, OLESON C V, et al. Application of diffusion tensor imaging in forecasting neurological injury and recovery after human cervical spinal cord injury[J]. J Neurotrauma, 2019, 36(21): 3051-3061. DOI: 10.1089/neu.2018.6092.
[31]
PETERSEN J A, WILM B J, VON MEYENBURG J, et al. Chronic cervical spinal cord injury: DTI correlates with clinical and electrophysiological measures[J]. J Neurotrauma, 2012, 29(8): 1556-1566. DOI: 10.1089/neu.2011.2027.
[32]
SEIF M, GANDINI WHEELER-KINGSHOTT C A, COHEN-ADAD J, et al. Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers[J]. Spinal Cord, 2019, 57(9): 717-728. DOI: 10.1038/s41393-019-0309-x.
[33]
ZHAO C R, AO J S, PEI X J, et al. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury[J]. Magn Reson Imaging, 2018, 47: 25-32. DOI: 10.1016/j.mri.2017.11.009.
[34]
FARO S H, SAKSENA S, KRISA L, et al. DTI of chronic spinal cord injury in children without MRI abnormalities (SCIWOMR) and with pathology on MRI and comparison to severity of motor impairment[J]. Spinal Cord, 2022, 60(5): 457-464. DOI: 10.1038/s41393-022-00770-5.
[35]
MIDDLETON D M, SHAHRAMPOUR S, KRISA L, et al. Correlations of diffusion tensor imaging and clinical measures with spinal cord cross-sectional area measurements in pediatric spinal cord injury patients[J]. J Spinal Cord Med, 2023, 46(6): 950-957. DOI: 10.1080/10790268.2021.1997027.
[36]
ALIZADEH M, FISHER J, SAKSENA S, et al. Reduced field of view diffusion tensor imaging and fiber tractography of the pediatric cervical and thoracic spinal cord injury[J]. J Neurotrauma, 2018, 35(3): 452-460. DOI: 10.1089/neu.2017.5174.
[37]
MULCAHEY M J, SAMDANI A F, GAUGHAN J P, et al. Diagnostic accuracy of diffusion tensor imaging for pediatric cervical spinal cord injury[J]. Spinal Cord, 2013, 51(7): 532-537. DOI: 10.1038/sc.2013.36.
[38]
MULCAHEY M J, GAUGHAN J P, CHAFETZ R S, et al. Interrater reliability of the international standards for neurological classification of spinal cord injury in youths with chronic spinal cord injury[J]. Arch Phys Med Rehabil, 2011, 92(8): 1264-1269. DOI: 10.1016/j.apmr.2011.03.003.
[39]
SAKSENA S, MOHAMED F B, MIDDLETON D M, et al. Diffusion tensor imaging assessment of regional white matter changes in the cervical and thoracic spinal cord in pediatric subjects[J]. J Neurotrauma, 2019, 36(6): 853-861. DOI: 10.1089/neu.2018.5826.
[40]
YANG L, LIU Y, KONG X, et al. Diffusion tensor magnetic resonance imaging of the postoperative spine with metallic implants[J/OL]. NMR Biomed, 2020, 33(8): e4321 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/32348023. DOI: 10.1002/nbm.4321.
[41]
ZHU F, LIU Y, ZENG L, et al. Evaluating the severity and prognosis of acute traumatic cervical spinal cord injury: A novel classification using diffusion tensor imaging and diffusion tensor tractography[J]. Spine (Phila Pa 1976), 2021, 46(10): 687-694. DOI: 10.1097/BRS.0000000000003923.
[42]
ZHU F, WANG Y, KONG X, et al. Assessment of acute traumatic cervical spinal cord injury using conventional magnetic resonance imaging in combination with diffusion tensor imaging-tractography: a retrospective comparative study[J]. Eur Spine J, 2022, 31(7): 1700-1709. DOI: 10.1007/s00586-022-07207-w.
[43]
ZHAO C, RAO J S, DUAN H, et al. Chronic spinal cord injury repair by NT3-chitosan only occurs after clearance of the lesion scar[J/OL]. Signal Transduct Target Ther, 2022, 7(1): 184 [2023-07-07]. https://pubmed.ncbi.nlm.nih.gov/35710784/. DOI: 10.1038/s41392-022-01010-1.
[44]
ZHAO Y, YAO L, AO L, et al. Study of the diffusion tensor imaging for preclinical therapeutic efficacy of umbilical cord mesenchymal stem cell transplantation in the treatment of spinal cord injury[J]. Int J Gen Med, 2021, 14: 9721-9732. DOI: 10.2147/IJGM.S326023.
[45]
SUN W, TAN J, LI Z, et al. Evaluation of hyperbaric oxygen treatment in acute traumatic spinal cord injury in rats using diffusion tensor imaging[J]. Aging Dis, 2018, 9(3): 391-400. DOI: 10.14336/AD.2017.0726.
[46]
LIU F, YANG L, LIU J, et al. Evaluation of hyperbaric oxygen therapy for spinal cord injury in rats with different treatment course using diffusion tensor imaging[J]. Spinal Cord, 2019, 57(5): 404-411. DOI: 10.1038/s41393-018-0238-0.

PREV Research progress of magnetic resonance radiomics in predicting the methylation status of MGMT promoter in glioma
NEXT Research progress of multi-parameter MRI in the evaluation of treatment response and predicting the prognosis of nasopharyngeal carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn