Share this content in WeChat
Clinical Article
A preliminary study on predicting glioblastoma recurrence and postoperative survival time through MRI imaging radiomics
ZHAI Xiaoyang  REN Jinfa  CHENG Sijia  MAO Ke  DONG Yaning  HAN Dongming 

Cite this article as: ZHAI X Y, REN J F, CHENG S J, et al. A preliminary study on predicting glioblastoma recurrence and postoperative survival time through MRI imaging radiomics[J]. Chin J Magn Reson Imaging, 2023, 14(12): 26-32. DOI:10.12015/issn.1674-8034.2023.12.005.

[Abstract] Objective To develop an evaluation model for predicting early postoperative recurrence and evaluating the prognosis of glioma patients using preoperative MRI radiomics and clinical features.Materials and Methods The MRI images and clinical data of 120 glioma patients were analyzed retrospectively to extract the imaging omics characteristics of the peritumoral edema areas and intratumoral enhancement areas. To compare the variables between the recurrence and non-recurrence groups, we utilized either Chi-square tests or Fisher's exact tests. Furthermore, differences between continuous variables were examined through t-tests or U tests. For dimensionality reduction of the features, we employed t-tests, Spearman correlation analysis, and least absolute shrinkage and selection operator (LASSO) regression. Three distinct predictive models were established, including intratumoral, intratumoral plus peritumoral edema, and fusion models. Nomograms were employed to display the predictions of the 3-year survival period, while Kaplan-Meier (KM) plots were utilized to illustrate the survival outcomes across different groups.Results Statistically significant differences were observed in the isocitrate dehydrogenase (IDH) mutation status and Rad-score between the recurrence and non-recurrence groups, with P-values of 0.04 and<0.001, respectively. The final analysis included fifteen imaging radiomics features. The three models in the training set displayed area under the curve (AUC) values of 0.905, 0.925, and 0.923, while in the test set, the corresponding AUC values were 0.859, 0.866, and 0.897. The fusion model outperformed the others. KM analysis demonstrated no significant differences in survival time among patient groups in both the training and test sets.Conclusions MRI-based imaging radiomics demonstrates promising predictive capability for postoperative recurrence in glioblastoma patients, while also offering an initial assessment of postoperative survival time.
[Keywords] glioma;radiomics;machine learning;survival time;magnetic resonance imaging

ZHAI Xiaoyang   REN Jinfa   CHENG Sijia   MAO Ke   DONG Yaning   HAN Dongming*  

Department of MRI, the First Affiliated Hospital of Xinxiang University, Xinxiang 453100, China

Corresponding author: HAN D M, E-mail:

Conflicts of interest   None.

Received  2023-06-29
Accepted  2023-11-03
DOI: 10.12015/issn.1674-8034.2023.12.005
Cite this article as: ZHAI X Y, REN J F, CHENG S J, et al. A preliminary study on predicting glioblastoma recurrence and postoperative survival time through MRI imaging radiomics[J]. Chin J Magn Reson Imaging, 2023, 14(12): 26-32. DOI:10.12015/issn.1674-8034.2023.12.005.

OSTROM Q T, PATIL N, CIOFFI G, et al. Corrigendum to: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017[J/OL]. Neuro Oncol, 2022, 24(7): 1214 [2023-06-29]. DOI: 10.1093/neuonc/noaa269.
WEN P Y, HUSE J T. 2016 World Health Organization Classification of Central Nervous System Tumors[J]. Continuum (Minneap Minn), 2017, 23(6, Neuro-oncology): 1531-1547. DOI: 10.1212/CON.0000000000000536.
OMURO A, DEANGELIS L M. Glioblastoma and other malignant gliomas: a clinical review[J]. JAMA, 2013, 310(17): 1842-1850. DOI: 10.1001/jama.2013.280319.
STUPP R, MASON W P, VAN DEN BENT M J, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med, 2005, 352(10): 987-996. DOI: 10.1056/NEJMoa043330.
KRAUZE A V, MYREHAUG S D, CHANG M G, et al. A phase 2 study of concurrent radiation therapy, temozolomide, and the histone deacetylase inhibitor valproic acid for patients with glioblastoma[J]. Int J Radiat Oncol Biol Phys, 2015, 92(5): 986-992. DOI: 10.1016/j.ijrobp.2015.04.038.
OSTROM Q T, PATIL N, CIOFFI G, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017[J]. Neuro Oncol, 2020, 22(12Suppl 2): v1-v96. DOI: 10.1093/neuonc/noaa200.
DO D T, YANG M R, LAM L, et al. Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach[J/OL]. Sci Rep, 2022, 12(1): 13412 [2023-06-29]. DOI: 10.1038/s41598-022-17707-w.
PENG H, HUO J, LI B, et al. Predicting isocitrate dehydrogenase (IDH) mutation status in gliomas using multiparameter MRI radiomics features[J]. J Magn Reson Imaging, 2021, 53(5): 1399-1407. DOI: 10.1002/jmri.27434.
MANIKIS G C, IOANNIDIS G S, SIAKALLIS L, et al. Multicenter DSC-MRI-based radiomics predict IDH mutation in gliomas[J/OL]. Cancers (Basel), 2021, 13(16): 3965 [2023-06-29]. DOI: 10.3390/cancers13163965.
HASHIDO T, SAITO S, ISHIDA T. A radiomics-based comparative study on arterial spin labeling and dynamic susceptibility contrast perfusion-weighted imaging in gliomas[J/OL]. Sci Rep, 2020, 10(1): 6121 [2023-06-29]. DOI: 10.1038/s41598-020-62658-9.
PARK J E, KIM H S, JO Y, et al. Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI[J/OL]. Sci Rep, 2020, 10(1): 4250 [2023-06-29]. DOI: 10.1038/s41598-020-61178-w.
ZHANG J, WU Y, WANG Y, et al. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence[J]. Eur Radiol, 2023, 33(5): 3332-3342. DOI: 10.1007/s00330-022-09365-3.
LIU C, LI Y, XIA X, et al. Application of radiomics feature captured from MRI for prediction of recurrence for glioma patients[J]. J Cancer, 2022, 13(3): 965-974. DOI: 10.7150/jca.65366.
ELLINGSON B M, WEN P Y, CLOUGHESY T F. Modified criteria for radiographic response assessment in glioblastoma clinical trials[J]. Neurotherapeutics, 2017, 14(2): 307-320. DOI: 10.1007/s13311-016-0507-6.
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
ZHOU Y, GU H L, ZHANG X L, et al. Multiparametric magnetic resonance imaging-derived radiomics for the prediction of disease-free survival in early-stage squamous cervical cancer[J]. Eur Radiol, 2022, 32(4): 2540-2551. DOI: 10.1007/s00330-021-08326-6.
SHI W, QU C, WANG X, et al. Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression[J/OL]. Eur J Radio, 2021, 144: 109941 [2023-06-29]. DOI: 10.1016/j.ejrad.2021.109941.
YANG Y, HAN Y, ZHAO S, et al. Spatial heterogeneity of edema region uncovers survival-relevant habitat of Glioblastoma[J/OL]. Eur J Radiol, 2022, 154: 110423 [2023-06-29]. DOI: 10.1016/j.ejrad.2022.110423.
ALVES T R, LIMA F R, KAHN S A, et al. Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma[J]. Life Sci, 2011, 89(15-16): 532-539. DOI: 10.1016/j.lfs.2011.04.022.
MEYER M, REIMAND J, LAN X, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity[J]. Proc Natl Acad Sci U S A, 2015, 112(3): 851-856. DOI: 10.1073/pnas.1320611111.
STIEBER D, GOLEBIEWSKA A, EVERS L, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes[J]. Acta Neuropathol. 2014, 127(2): 203-219. DOI: 10.1007/s00401-013-1196-4.
CHEN K, JIANG X W, DENG L J, et al. Differentiation between glioma recurrence and treatment effects using amide proton transfer imaging: A mini-Bayesian bivariate meta-analysis[J/OL]. Front Oncol, 2022, 12: 852076 [2023-06-29]. DOI: 10.3389/fonc.2022.852076.
SAADOUN S, PAPADOPOULOS M C, DAVIES D C, et al. Increased aquaporin 1 water channel expression in human brain tumours[J]. Br J Cancer, 2002, 87(6): 621-623. DOI: 10.1038/sj.bjc.6600512.
WARTH A, SIMON P, CAPPER D, et al. Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival[J]. J Neurosci Res, 2007, 85(6): 1336-1346. DOI: 10.1002/jnr.21224.
PRASANNA P, PATEL J, PARTOVI S, et al. Radiomic features from the peritumoral brain parenchyma on treatment-naive multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings[J]. Eur Radiol, 2017, 27(10): 4188-4197. DOI: 10.1007/s00330-016-4637-3.
LEMEE J M, CLAVREUL A, AUBRY M, et al. Characterizing the peritumoral brain zone in glioblastoma: a multidisciplinary analysis[J]. J Neurooncol, 2015, 122(1): 53-61. DOI: 10.1007/s11060-014-1695-8.
MOLINARO A M, HERVEY-JUMPER S, MORSHED R A, et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma[J]. JAMA Oncol, 2020, 6(4): 495-503. DOI: 10.1001/jamaoncol.2019.6143.
KUMAR A J, LEEDS N E, FULLER G N, et al. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment[J]. Radiology, 2000, 217(2): 377-384. DOI: 10.1148/radiology.217.2.r00nv36377.
REDDY K, WESTERLY D, CHEN C. MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high-grade gliomas[J]. J Med Imaging Radiat Oncol, 2013, 57(3): 349-355. DOI: 10.1148/radiology.217.2.r00nv36377.
TESILEANU C, DIRVEN L, WIJNENGA M, et al. Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade Ⅳ: a confirmation of the cIMPACT-NOW criteria[J]. Neuro Oncol, 2020, 22(4): 515-523. DOI: 10.1093/neuonc/noz200.
BHAVYA B, ANAND C R, MADHUSOODANAN U K, et al. To be wild or mutant: Role of isocitrate dehydrogenase 1 (IDH1) and 2-hydroxy glutarate (2-HG) in gliomagenesis and treatment outcome in glioma[J]. Cell Mol Neurobiol, 2020, 40(1): 53-63. DOI: 10.1007/s10571-019-00730-3.

PREV The recurrent stroke associated with integrity of Willis ring and characteristics of intracranial-carotid artery plaques
NEXT Application of quantitative parameters based on T1 mapping sequence in identifying pathological types of lung cancer

Tel & Fax: +8610-67113815    E-mail: