Share this content in WeChat
Clinical Article
Structural analysis of brain volume in patients with mild cognitive impairment at high altitude
LIU Jinhao  QI Yonghong  YANG Guocai 

Cite this article as: LIU J H, QI Y H, YANG G C. Structural analysis of brain volume in patients with mild cognitive impairment at high altitude[J]. Chin J Magn Reson Imaging, 2023, 14(12): 15-18, 32. DOI:10.12015/issn.1674-8034.2023.12.003.

[Abstract] Objective To investigate the changes of gray matter density of native patients with mild cognitive impairment (MCI) at high altitude by structural magnetic resonance imaging (sMRI).Materials and Methods Ninety-one native MCI patients at high altitude (MCI group) and 95 native healthy controls (HC) matched for age, gender and education (HC group) were collected for neuropsychological testing and three-dimensional T1WI magnetization prepared rapid acquisition gradient echo sequence (3D-T1WI-MPRAGE) imaging. Gray matter density was measured in different whole-brain zones using voxel morphometric measurement (VBM) to compare brain regions with significant differences in gray matter density.Results MCI group had significantly lower gray matter density in the left hippocampus, left parahippocampal gyrus, left fusiform gyrus, and bilateral cerebellar than HC group (all P<0.05).Conclusions There are sMRI changes of brain in MCI patients at high altitude, this may be the structural basis for the changes in cognitive functions associated with chronic high-altitude exposure.
[Keywords] cognitive impairment;mild cognitive impairment;structural magnetic resonance imaging;magnetic resonance imaging;high altitude localities

LIU Jinhao   QI Yonghong   YANG Guocai*  

Department of MR, Qinghai Provincial People's Hospital, Xining 810007, China

Corresponding author: YANG G C, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Qinghai Provincial Health Commission Guiding Project (No. 2020-wjzdx-02).
Received  2023-01-28
Accepted  2023-11-29
DOI: 10.12015/issn.1674-8034.2023.12.003
Cite this article as: LIU J H, QI Y H, YANG G C. Structural analysis of brain volume in patients with mild cognitive impairment at high altitude[J]. Chin J Magn Reson Imaging, 2023, 14(12): 15-18, 32. DOI:10.12015/issn.1674-8034.2023.12.003.

CRAMER N P, KOROTCOV A, BOSOMTWI A, et al. Neuronal and vascular deficits following chronic adaptation to high altitude[J]. Exp Neurol, 2019, 311: 293-304. DOI: 10.1016/j.expneurol.2018.10.007.
FARINA F R, EMEK-SAVAŞ D D, RUEDA-DELGADO L, et al. A comparison of resting state EEG and structural MRI for classifying Alzheimer's disease and mild cognitive impairment[J/OL]. Neuroimage, 2020, 215: 116795 [2023-01-28]. DOI: 10.1016/j.neuroimage.2020.116795.
LI Y, CONG L, HOU T, et al. Characterizing global and regional brain structures in amnestic mild cognitive impairment among rural residents: A population-based study[J]. J Alzheimers Dis, 2021, 80(4): 1429-1438. DOI: 10.3233/JAD-201372.
MOORE E E, LIU D, PECHMAN K R, et al. Mild cognitive impairment staging yields genetic susceptibility, biomarker, and neuroimaging differences[J/OL]. Front Aging Neurosci, 2020, 12: 139 [2023-01-28]. DOI: 10.3389/fnagi.2020.00139.
LOMBARDI G, CRESCIOLI G, CAVEDO E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment[J/OL]. Cochrane Database Syst Rev, 2020, 3: CD009628 [2023-01-28]. DOI: 10.1002/14651858.CD009628.pub2.
KÄRKKÄINEN M, PRAKASH M, ZARE M, et al. Structural brain imaging phenotypes of mild cognitive impairment (MCI) and Alzheimer's disease (AD) found by hierarchical clustering[J/OL]. Int J Alzheimers Dis, 2020, 2020: 2142854 [2023-01-28]. DOI: 10.1155/2020/2142854.
LYU H, WANG J, XU J, et al. Structural and functional disruptions in subcortical vascular mild cognitive impairment with and without depressive symptoms[J/OL]. Front Aging Neurosci, 2019, 11: 241 [2023-01-28]. DOI: 10.3389/fnagi.2019.00241.
KÜHN S, GERLACH D, NOBLÉ H J, et al. An observational cerebral magnetic resonance imaging study following 7 days at 4554 m[J]. High Alt Med Biol, 2019, 20(4): 407-416. DOI: 10.1089/ham.2019.0056.
SAGOO R S, HUTCHINSON C E, WRIGHT A, et al. Magnetic resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema[J]. J Cereb Blood Flow Metab, 2017, 37(1): 319-331. DOI: 10.1177/0271678X15625350.
LI W P, ZHAO H, ZHANG X, et al. Study on the white matter neuronal integrity in amnestic mild cognitive impairment based on automating fiber-tract quantification[J]. Zhonghua Yi Xue Za Zhi, 2020, 100(3): 172-177. DOI: 10.3760/cma.j.issn.0376-2491.2020.03.003.
ARRUDA F, ROSSELLI M, GREIG M T, et al. The association between functional assessment and structural brain biomarkers in an ethnically diverse sample with normal cognition, mild cognitive impairment, or dementia[J]. Arch Clin Neuropsychol, 2021, 36(1): 51-61. DOI: 10.1093/arclin/acaa065.
VALDÉS HERNÁNDEZ M C, CLARK R, WANG S H, et al. The striatum, the hippocampus, and short-term memory binding: Volumetric analysis of the subcortical grey matter's role in mild cognitive impairment[J/OL]. Neuroimage Clin, 2020, 25: 102158 [2023-01-28]. DOI: 10.1016/j.nicl.2019.102158.
CHEN F, WU T, LUO Y, LI Z, et al. Amnestic mild cognitive impairment in Parkinson's disease: White matter structural changes and mechanisms[J/OL]. PLoS One, 2019, 14(12): e0226175 [2023-01-28]. DOI: 10.1371/journal.pone.0226175.
BROADHOUSE K M, MOWSZOWSKI L, DUFFY S, et al. Memory performance correlates of hippocampal subfield volume in mild cognitive impairment subtype[J/OL]. Front Behav Neurosci, 2019, 13: 259 [2023-01-28]. DOI: 10.3389/fnbeh.2019.00259.
GAO L, GU L, SHU H, et al. The reduced left hippocampal volume related to the delayed P300 latency in amnestic mild cognitive impairment[J]. Psychol Med, 2020: 1-9. DOI: 10.1017/S0033291720000811.
WANG P, ZHOU B, YAO H, et al. Aberrant hippocampal functional connectivity is associated with fornix white matter integrity in Alzheimer's disease and mild cognitive impairment[J]. J Alzheimers Dis, 2020, 75(4): 1153-1168. DOI: 10.3233/JAD-200066.
CHOO I H, CHONG A, CHUNG J Y, et al. Association of subjective memory complaints with the left parahippocampal amyloid burden in mild cognitive impairment[J]. J Alzheimers Dis, 2019, 72(4): 1261-1268. DOI: 10.3233/JAD-190816.
WEI Y, HUANG N, LIU Y, et al. Hippocampal and amygdalar morphological abnormalities in Alzheimer's disease based on three Chinese MRI datasets[J/OL]. Curr Alzheimer Res, 2021 [2023-01-28]. DOI: 10.2174/1567205018666210218150223.
SHU H, GU L, YANG P, et al. Disturbed temporal dynamics of episodic retrieval activity with preserved spatial activity pattern in amnestic mild cognitive impairment: A simultaneous EEG-fMRI study[J/OL]. Neuroimage Clin, 2021, 30: 102572 [2023-01-28]. DOI: 10.1016/j.nicl.2021.102572.
NOVELLINO F, LÓPEZ M E, VACCARO M G, et al. Association between hippocampus, thalamus, and caudate in mild cognitive impairment APOEε4 carriers: A structural covariance MRI study[J/OL]. Front Neurol, 2019, 10: 1303 [2023-01-28]. DOI: 10.3389/fneur.2019.01303.
KIM H J, CHEONG E N, JO S, et al. The cerebellum could serve as a potential imaging biomarker of dementia conversion in patients with amyloid-negative amnestic mild cognitive impairment[J/OL]. Eur J Neurol, 2021 [2023-01-28]. DOI: 10.1111/ene.14770.
JI W, ZHANG Y, GE R L, et al. NMDA receptor-mediated excitotoxicity is involved in neuronal apoptosis and cognitive impairment induced by chronic hypobaric hypoxia exposure at high altitude[J]. High Alt Med Biol, 2021, 22(1): 45-57. DOI: 10.1089/ham.2020.0127.
ZHU D, HE B, ZHANG M, et al. A multimodal MR imaging study of the effect of hippocampal damage on affective and cognitive functions in a rat model of chronic exposure to a plateau environment[J]. Neurochem Res, 2022, 47(4): 979-1000. DOI: 10.1007/s11064-021-03498-5.
ZHANG L, NI H, YU Z, et al. Investigation on the alteration of brain functional network and its role in the identification of mild cognitive impairment[J/OL]. Front Neurosci, 2020, 14: 558434 [2023-01-28]. DOI: 10.3389/fnins.2020.558434.
KAESTNER E, REYES A, CHEN A, et al. Atrophy and cognitive profiles in older adults with temporal lobe epilepsy are similar to mild cognitive impairment[J]. Brain, 2021, 144(1): 236-250. DOI: 10.1093/brain/awaa397.
SUN P, LOU W, LIU J, et al. Mapping the patterns of cortical thickness in single- and multiple-domain amnestic mild cognitive impairment patients: a pilot study[J]. Aging (Albany NY), 2019, 11(22): 10000-10015. DOI: 10.18632/aging.102362.
ZHENG H, ONODA K, NAGAI A, et al. Reduced dynamic complexity of BOLD signals differentiates mild cognitive impairment from normal aging[J/OL]. Front Aging Neurosci, 2020, 12: 90 [2023-01-28]. DOI: 10.3389/fnagi.2020.00090.
YAN X, ZHANG J, GONG Q, et al. Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study[J/OL]. BMC Neurosci, 2011, 12: 94 [2023-01-28]. DOI: 10.1186/1471-2202-12-94.
GUO CC, TAN R, HODGES JR, et al. Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia[J]. Brain, 2016, 139(Pt 5): 1527-1538. DOI: 10.1093/brain/aww003.
TANG F, ZHU D, MA W, et al. Differences changes in cerebellar functional connectivity between mild cognitive impairment and Alzheimer's disease: A seed-based approach[J/OL]. Front Neurol, 2021, 12: 645171 [2023-01-28]. DOI: 10.3389/fneur.2021.645171.
KANG D W, WANG S M, UM Y H, et al. Distinctive association of the functional connectivity of the posterior cingulate cortex on memory performances in early and late amnestic mild cognitive impairment patients[J/OL]. Front Aging Neurosci, 2021, 13: 696735 [2023-01-28]. DOI: 10.3389/fnagi.2021.696735.
ZHENG W, LIU X, SONG H, et al. Altered functional connectivity of cognitive-related cerebellar subregions in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2017, 9: 143 [2023-01-28]. DOI: 10.3389/fnagi.2017.00143.
LIN C Y, CHEN C H, TOM S E, et al. Cerebellar volume is associated with cognitive decline in mild cognitive impairment: Results from ADNI[J]. Cerebellum, 2020, 19(2): 217-225. DOI: 10.1007/s12311-019-01099-1.
DUGGER B N, DAVIS K, MALEK-AHMADI M, et al. Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment[J/OL]. BMC Neurol, 2015, 15: 146 [2023-01-28]. DOI: 10.1186/s12883-015-0403-4.
KASKIKALLIO A, KARRASCH M, RINNE J O, et al. Domain-specific cognitive effects of white matter pathology in old age, mild cognitive impairment and Alzheimer's disease[J]. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 2020, 27(3): 453-470. DOI: 10.1080/13825585.2019.1628916.
AGUIRRE N, COSTUMERO V, MARIN-MARIN L, et al. Activity in memory brain networks during encoding differentiates mild cognitive impairment converters from non-converters[J]. J Alzheimers Dis, 2019, 71(3): 1049-1061. DOI: 10.3233/JAD-190421.
CHEN X, ZHANG Q, WANG J, et al. Cognitive and neuroimaging changes in healthy immigrants upon relocation to a high altitude: A panel study[J]. Hum Brain Mapp, 2017, 38(8): 3865-3877. DOI: 10.1002/hbm.23635.
DANI M, WOOD M, MIZOGUCHI R, et al. Tau aggregation correlates with amyloid deposition in both mild cognitive impairment and Alzheimer's disease subjects[J]. J Alzheimers Dis, 2019, 70(2): 455-465. DOI: 10.3233/JAD-181168.

PREV Clinical diagnosis value of multi-b value diffusion weighted imaging in Alzheimer,s disease
NEXT The recurrent stroke associated with integrity of Willis ring and characteristics of intracranial-carotid artery plaques

Tel & Fax: +8610-67113815    E-mail: