Share this content in WeChat
Research and application progresses of artificial intelligence in breast cancer imaging
WANG Yunxia  TAN Hongna 

Cite this article as: WANG Y X, TAN H N. Research and application progresses of artificial intelligence in breast cancer imaging[J]. Chin J Magn Reson Imaging, 2023, 14(11): 177-182. DOI:10.12015/issn.1674-8034.2023.11.030.

[Abstract] The incidence of breast cancer is among the highest in the world, posing a serious threat to women's physical and mental health. Early diagnosis can significantly improve the survival rate of breast cancer patients. In recent years, with the development of big data and computer algorithms, the research and application of artificial intelligence (AI) such as radiomics and deep learning in the field of medical imaging have become increasingly extensive. It makes accurate and efficient imaging evaluation possible. The recent research on the status and progress of medical image-based AI in preoperative benign or malignant evaluation of breast cancer, breast cancer classification and histological grading, biomarkers and molecular subtyping prediction, pathological status of lymph nodes and susceptible gene diagnosis are reviewed in this article. The current status and problems of AI development in this field are reviewed and analyzed here to promote the clinical translation of AI technologies for breast cancer diagnosis and provide optimal radiological assistance for precise noninvasive clinical diagnosis and treatment.
[Keywords] breast cancer;artificial intelligence aided diagnosis;deep learning;radiomics;magnetic resonance imaging;convolutional neural networks;predictive performance

WANG Yunxia   TAN Hongna*  

Department of Radiology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: TAN H N, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Henan Province (No. 202300410081); Medical Science and Technological Project of Henan Province (No. LHGJ20220055).
Received  2023-03-24
Accepted  2023-10-13
DOI: 10.12015/issn.1674-8034.2023.11.030
Cite this article as: WANG Y X, TAN H N. Research and application progresses of artificial intelligence in breast cancer imaging[J]. Chin J Magn Reson Imaging, 2023, 14(11): 177-182. DOI:10.12015/issn.1674-8034.2023.11.030.

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
WANG X R, WANG C, GUAN J H, et al. Progress of Breast Cancer basic research in China[J]. Int J Biol Sci, 2021, 17(8): 2069-2079. DOI: 10.7150/ijbs.60631.
WANG F, YU Z G. Current status of breast cancer prevention in China[J]. Chronic Dis Transl Med, 2015, 1(1): 2-8. DOI: 10.1016/j.cdtm.2015.02.003.
PENG W J, GU Y J, GONG J. Application prospects of artificial intelligence technology in breast imaging[J]. Chin J Radiol, 2023, 57(2): 121-124. DOI: 10.3760/cma.j.cn112149-20221208-00985.
HAMET P, TREMBLAY J. Artificial intelligence in medicine[J/OL]. Metabolism, 2017, 69: S36-S40 [2023-03-23]. DOI: 10.1016/j.metabol.2017.01.011.
WAGNER M W, NAMDAR K, BISWAS A, et al. Radiomics, machine learning, and artificial intelligence-what the neuroradiologist needs to know[J]. Neuroradiology, 2021, 63(12): 1957-1967. DOI: 10.1007/s00234-021-02813-9.
LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Trans Neural Netw Learn Syst, 2022, 33(12): 6999-7019. DOI: 10.1109/TNNLS.2021.3084827.
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
KUMAR V, GU Y H, BASU S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
OUYANG G L, WANG X. The role of radiomics and artificial intelligence in predicting and evaluating the efficacy of neoadjuvant chemoradiotherapy for rectal cancer[J]. Chin J Radiat Oncol, 2023, 32(4): 360-364. DOI: 10.3760/cma.j.cn113030-20220119-00026.
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
GONG J, HAO W, PENG W J. Application and prospect of artificial intelligence in breast imaging diagnosis[J]. Oncoradiology, 2019, 28(3): 134-138. DOI: 10.19732/j.cnki.2096-6210.2019.03.002.
SECHOPOULOS I, TEUWEN J, MANN R. Artificial intelligence for breast cancer detection in mammography and digital breast tomosynthesis: state of the art[J/OL]. Semin Cancer Biol, 2021, 72: 214-225 [2023-03-23]. DOI: 10.1016/j.semcancer.2020.06.002.
SAHINER B, CHAN H P, PETRICK N, et al. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images[J]. IEEE Trans Med Imaging, 1996, 15(5): 598-610. DOI: 10.1109/42.538937.
AL-MASNI M A, AL-ANTARI M A, PARK J M, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system[J/OL]. Comput Methods Programs Biomed, 2018, 157: 85-94 [2023-03-23]. DOI: 10.1016/j.cmpb.2018.01.017.
PAULINELLI R R, OLIVEIRA L F, FREITAS-JUNIOR R, et al. The accuracy of the SONOBREAST statistical model in comparison to BI-RADS for the prediction of malignancy in solid breast nodules detected at ultrasonography[J/OL]. Eur J Obstet Gynecol Reprod Biol, 2016, 196: 1-5 [2023-03-23]. DOI: 10.1016/j.ejogrb.2015.09.031.
QI X F, ZHANG L, CHEN Y, et al. Automated diagnosis of breast ultrasonography images using deep neural networks[J/OL]. Med Image Anal, 2019, 52: 185-198 [2023-03-23]. DOI: 10.1016/
ZHANG X, LIANG M, YANG Z H, et al. Deep learning-based radiomics of B-mode ultrasonography and shear-wave elastography: improved performance in breast mass classification[J/OL]. Front Oncol, 2020, 10: 1621 [2023-03-23]. DOI: 10.3389/fonc.2020.01621.
WANG Y, WEN S B, ZHOU H Y, et al. Application progress of MRI radiomics in predicting the prognosis of breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(9): 136-140. DOI: 10.12015/issn.1674-8034.2023.04.029.
JIANG Y L, EDWARDS A V, NEWSTEAD G M. Artificial intelligence applied to breast MRI for improved diagnosis[J]. Radiology, 2021, 298(1): 38-46. DOI: 10.1148/radiol.2020200292.
ZHOU J J, ZHANG Y, CHANG K T, et al. Diagnosis of benign and malignant breast lesions on DCE-MRI by using radiomics and deep learning with consideration of peritumor tissue[J]. J Magn Reson Imaging, 2020, 51(3): 798-809. DOI: 10.1002/jmri.26981.
TRUHN D, SCHRADING S, HAARBURGER C, et al. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI[J]. Radiology, 2019, 290(2): 290-297. DOI: 10.1148/radiol.2018181352.
HU Q Y, WHITNEY H M, GIGER M L. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI[J/OL]. Sci Rep, 2020, 10(1): 10536 [2023-03-23]. DOI: 10.1038/s41598-020-67441-4.
POLÓNIA A, CAMPELOS S, RIBEIRO A, et al. Artificial intelligence improves the accuracy in histologic classification of breast lesions[J]. Am J Clin Pathol, 2021, 155(4): 527-536. DOI: 10.1093/ajcp/aqaa151.
FAN M, YUAN W, ZHAO W R, et al. Joint prediction of breast cancer histological grade and ki-67 expression level based on DCE-MRI and DWI radiomics[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1632-1642. DOI: 10.1109/JBHI.2019.2956351.
HUANG Y C, CHENG Z X, HUANG X M, et al. Preoperative evaluation of histologic grade in invasive breast cancer with T2W-MRI based radiomics signature[J]. J Cent South Univ Med Sci, 2019, 44(3): 285-289. DOI: 10.11817/j.issn.1672-7347.2019.03.009.
ELSHAZLY A M, GEWIRTZ D A. An overview of resistance to Human epidermal growth factor receptor 2 (Her2) targeted therapies in breast cancer[J]. Cancer Drug Resist, 2022, 5(2): 472-486. DOI: 10.20517/cdr.2022.09.
MARCHIÒ C, ANNARATONE L, MARQUES A, et al. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond[J/OL]. Semin Cancer Biol, 2021, 72: 123-135 [2023-03-23]. DOI: 10.1016/j.semcancer.2020.02.016.
ZHOU J, TAN H N, LI W, et al. Radiomics signatures based on multiparametric MRI for the preoperative prediction of the HER2 status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): 1352-1360. DOI: 10.1016/j.acra.2020.05.040.
XU Z L, YANG Q W, LI M H, et al. Predicting HER2 status in breast cancer on ultrasound images using deep learning method[J/OL]. Front Oncol, 2022, 12: 829041 [2023-03-23]. DOI: 10.3389/fonc.2022.829041.
FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram for identifying HER2 status in patients with breast cancer: a multicenter study[J/OL]. Front Oncol, 2022, 12: 922185 [2023-03-23]. DOI: 10.3389/fonc.2022.922185.
HUBER K E, CAREY L A, WAZER D E. Breast cancer molecular subtypes in patients with locally advanced disease: impact on prognosis, patterns of recurrence, and response to therapy[J]. Semin Radiat Oncol, 2009, 19(4): 204-210. DOI: 10.1016/j.semradonc.2009.05.004.
TURNER K M, YEO S K, HOLM T M, et al. Heterogeneity within molecular subtypes of breast cancer[J]. Am J Physiol Cell Physiol, 2021, 321(2): C343-C354. DOI: 10.1152/ajpcell.00109.2021.
LEITHNER D, MAYERHOEFER M E, MARTINEZ D F, et al. Non-invasive assessment of breast cancer molecular subtypes with multiparametric magnetic resonance imaging radiomics[J/OL]. J Clin Med, 2020, 9(6): 1853 [2023-03-23]. DOI: 10.3390/jcm9061853.
ZHANG X Y, LI H, WANG C Y, et al. Evaluating the accuracy of breast cancer and molecular subtype diagnosis by ultrasound image deep learning model[J/OL]. Front Oncol, 2021, 11: 623506 [2023-03-23]. DOI: 10.3389/fonc.2021.623506.
WANG H, HU Y T, LI H, et al. Preliminary study on identification of estrogen receptor-positive breast cancer subtypes based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) texture analysis[J]. Gland Surg, 2020, 9(3): 622-628. DOI: 10.21037/gs.2020.04.01.
MARINO M A, LEITHNER D, SUNG J, et al. Radiomics for tumor characterization in breast cancer patients: a feasibility study comparing contrast-enhanced mammography and magnetic resonance imaging[J/OL]. Diagnostics, 2020, 10(7): 492 [2023-03-23]. DOI: 10.3390/diagnostics10070492.
PETRILLO A, FUSCO R, BERNARDO E D, et al. Prediction of breast cancer histological outcome by radiomics and artificial intelligence analysis in contrast-enhanced mammography[J/OL]. Cancers, 2022, 14(9): 2132 [2023-03-23]. DOI: 10.3390/cancers14092132.
LEITHNER D, HORVAT J V, MARINO M A, et al. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results[J/OL]. Breast Cancer Res, 2019, 21(1): 106 [2023-03-23]. DOI: 10.1186/s13058-019-1187-z.
WEIGELT B, PETERSE J L, VAN 'T VEER L J. Breast cancer metastasis: markers and models[J]. Nat Rev Cancer, 2005, 5(8): 591-602. DOI: 10.1038/nrc1670.
BRACKSTONE M, BALDASSARRE F G, PERERA F E, et al. Management of the axilla in early-stage breast cancer: Ontario health (cancer care Ontario) and ASCO guideline[J]. J Clin Oncol, 2021, 39(27): 3056-3082. DOI: 10.1200/JCO.21.00934.
SHAN Y N, XU W, WANG R, et al. A nomogram combined radiomics and kinetic curve pattern as imaging biomarker for detecting metastatic axillary lymph node in invasive breast cancer[J/OL]. Front Oncol, 2020, 10: 1463 [2023-03-23]. DOI: 10.3389/fonc.2020.01463.
MAO N, DAI Y, LIN F, et al. Radiomics nomogram of DCE-MRI for the prediction of axillary lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2020, 10: 541849 [2023-03-23]. DOI: 10.3389/fonc.2020.541849.
ZHENG X Y, YAO Z, HUANG Y N, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J/OL]. Nat Commun, 2020, 11(1): 1236 [2023-03-23]. DOI: 10.1038/s41467-020-15027-z.
JIANG Y, MA M M, CHENG Y J, et al. Feasibility study of predicting axillary lymph node metastasis of breast cancer using radiomics analysis based on dynamic contrast-enhanced MRI[J]. Chin J Radiol, 2022, 56(6): 631-635. DOI: 10.3760/cma.j.cn112149-20210810-00460.
ROSSING M, SØRENSEN C S, EJLERTSEN B, et al. Whole genome sequencing of breast cancer[J]. APMIS, 2019, 127(5): 303-315. DOI: 10.1111/apm.12920.
AARØE J, LINDAHL T, DUMEAUX V, et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer[J/OL]. Breast Cancer Res, 2010, 12(1): R7 [2023-03-23]. DOI: 10.1186/bcr2472.
YOSHIMURA A, IMOTO I, IWATA H. Functions of breast cancer predisposition genes: implications for clinical management[J/OL]. Int J Mol Sci, 2022, 23(13): 7481 [2023-03-23]. DOI: 10.3390/ijms23137481.
JIA Y S, WU H. Research advances in radiogenomics[J]. Chin J Magn Reson Imag, 2022, 13(3): 166-170. DOI: 10.12015/issn.1674-8034.2022.03.040.
LEE A, MOON B I, KIM T H. BRCA1/BRCA2 pathogenic variant breast cancer: treatment and prevention strategies[J]. Ann Lab Med, 2020, 40(2): 114-121. DOI: 10.3343/alm.2020.40.2.114.
VASILEIOU G, COSTA M J, LONG C, et al. Breast MRI texture analysis for prediction of BRCA-associated genetic risk[J/OL]. BMC Med Imaging, 2020, 20(1): 86 [2023-03-23]. DOI: 10.1186/s12880-020-00483-2.
MIRICESCU D, TOTAN A, STANESCU-SPINU I I, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects[J/OL]. Int J Mol Sci, 2020, 22(1): 173 [2023-03-23]. DOI: 10.3390/ijms22010173.
SHEN W Q, GUO Y H, RU W E, et al. Using an improved residual network to identify PIK3CA mutation status in breast cancer on ultrasound image[J/OL]. Front Oncol, 2022, 12: 850515 [2023-03-23]. DOI: 10.3389/fonc.2022.850515.
ZHANG X P, ZHANG Y C, ZHANG G J, et al. Deep learning with radiomics for disease diagnosis and treatment: challenges and potential[J/OL]. Front Oncol, 2022, 12: 773840 [2023-03-23]. DOI: 10.3389/fonc.2022.773840.
SUN Q C, LIN X N, ZHAO Y S, et al. Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region[J/OL]. Front Oncol, 2020, 10: 53 [2023-03-23]. DOI: 10.3389/fonc.2020.00053.
CHEN Y L, LI R, CHEN T W, et al. Whole-tumour histogram analysis of pharmacokinetic parameters from dynamic contrast-enhanced MRI in resectable oesophageal squamous cell carcinoma can predict T-stage and regional lymph node metastasis[J/OL]. Eur J Radiol, 2019, 112: 112-120 [2023-03-23]. DOI: 10.1016/j.ejrad.2019.01.012.
CHAN H P, SAMALA R K, HADJIISKI L M. CAD and AI for breast cancer-recent development and challenges[J/OL]. Br J Radiol, 2020, 93(1108): 20190580 [2023-03-23]. DOI: 10.1259/bjr.20190580.

PREV MRI characteristics of neurological complications related to tumor therapy
NEXT Progress of MRI in assessing the efficacy of chemotherapy for colorectal liver metastases

Tel & Fax: +8610-67113815    E-mail: