Share this content in WeChat
Clinical Article
The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions
WANG Jinhan  LI Xiang  LI Chenxia  CUI Ting  JING Yanbo  Chu Chunwei  LIU Shuai  LIU Chenyue  ZHANG Yuelang 

Cite this article as: WANG J H, LI X, LI C X, et al. The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions[J]. Chin J Magn Reson Imaging, 2023, 14(11): 56-61. DOI:10.12015/issn.1674-8034.2023.11.010.

[Abstract] Objective To explore the application value of virtual magnetic resonance elastography (vMRE) based on diffusion weighted imaging (DWI) in focal liver lesion (FLL).Materials and Methods A retrospective analysis was made of 224 patients with FLL who underwent upper abdomen MRI in the First Affiliated Hospital of Xi'an Jiaotong University from November 2021 to June 2022. All patients upper abdominal MRI examination sequences including outine fat suppression T2WI (FS-T2WI) and multi b-value DWI. The study subjects were divided into five groups based on pathological or clinical diagnosis: hepatocellular carcinoma, metastatic tumor, cholangiocarcinoma, hemangioma, and liver cyst. Compare the measured values between groups for statistical differences using t-tests or Mann Whitney U-tests, and draw receiver operating characteristic (ROC) curves to evaluate the diagnostic efficacy of vMRE.Result There was a statistically significant difference in the stiffness value of vMRE in distinguishing benign and malignant lesions (Z=-12.309, P<0.01), and there was a statistically significant difference in the stiffness value between differentiating hemangiomas and malignant lesions (Z=-6.733, P<0.01). The sensitivity, specificity and area under the curve (AUC) of virtual elastography were 92.2%, 96.7% and 0.981 respectively in differentiating benign and malignant FLL. The sensitivity of virtual elastography in differentiating hemangioma from malignant lesions was 92.2%, the specificity was 88.0%, and the AUC was 0.926. There were statistical differences between hemangioma and hepatocellular carcinoma (Z=-6.232, P<0.01), metastatic tumor (Z=-5.975, P<0.01), and cholangiocarcinoma groups (Z=-4.313, P<0.01). In malignant lesions, there was no significant statistical difference between the hepatocellular carcinoma group and the metastatic tumor group (K=1.231, P>0.05), and the hepatocellular carcinoma group and the cholangiocarcinoma group (K=-1.403, P>0.05); There was a statistical difference between the metastatic tumor group and the cholangiocarcinoma group (K=-2.062, P<0.05).Conclusions vMRE based on DWI is a non-invasive indicator that reflects the stiffness of tissues. It is helpful for the differential diagnosis of common benign and malignant liver lesions, and may provide a new indicator for the differential diagnosis of atypical hemangiomas and malignant lesions in clinical practice.
[Keywords] focal liver lesions;virtual magnetic resonance elastography;diffusion weighted imaging;magnetic resonance imaging;stiffness

WANG Jinhan   LI Xiang   LI Chenxia   CUI Ting   JING Yanbo   Chu Chunwei   LIU Shuai   LIU Chenyue   ZHANG Yuelang*  

Department of Medical Image, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China

Corresponding author: ZHANG Y L, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS General Projects of Shaanxi Province Key Research and Development Plan (No. 2022SF-319); General Clinical Research Project of the First Affiliated Hospital of Xi'an Jiaotong University (No. XJTU1AF-CRF-2022-028).
Received  2023-05-01
Accepted  2023-09-21
DOI: 10.12015/issn.1674-8034.2023.11.010
Cite this article as: WANG J H, LI X, LI C X, et al. The application value of virtual magnetic resonance elastography based on diffusion weighted imaging in focal liver lesions[J]. Chin J Magn Reson Imaging, 2023, 14(11): 56-61. DOI:10.12015/issn.1674-8034.2023.11.010.

GU J H, ZHU L, JIANG T A. Quantitative ultrasound elastography methods in focal liver lesions including hepatocellular carcinoma: from diagnosis to prognosis[J]. Ultrasound Q, 2021, 37(2): 90-96. DOI: 10.1097/RUQ.0000000000000491.
ZHANG H P, GU J Y, BAI M, et al. Value of shear wave elastography with maximal elasticity in differentiating benign and malignant solid focal liver lesions[J]. World J Gastroenterol, 2020, 26(46): 7416-7424. DOI: 10.3748/wjg.v26.i46.7416.
JIANG Y F, ZHANG H Y, WANG J, et al. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy[J/OL]. J Hematol Oncol, 2022, 15(1): 34 [2023-07-21]. DOI: 10.1186/s13045-022-01252-0.
NIA H T, MUNN L L, JAIN R K. Physical traits of cancer[J/OL]. Science, 2020, 370(6516): eaaz0868 [2023-07-22]. DOI: 10.1126/science.aaz0868.
WANG J, SHAN Q G, LIU Y, et al. 3D MR elastography of hepatocellular carcinomas as a potential biomarker for predicting tumor recurrence[J]. J Magn Reson Imaging, 2019, 49(3): 719-730. DOI: 10.1002/jmri.26250.
OZTURK A, OLSON M C, SAMIR A E, et al. Liver fibrosis assessment: MR and US elastography[J]. Abdom Radiol (NY), 2022, 47(9): 3037-3050. DOI: 10.1007/s00261-021-03269-4.
LE BIHAN D, ICHIKAWA S, MOTOSUGI U. Diffusion and intravoxel incoherent motion MR imaging-based virtual elastography: a hypothesis-generating study in the liver[J]. Radiology, 2017, 285(2): 609-619. DOI: 10.1148/radiol.2017170025.
AUNAN-DIOP J S, ANDERSEN M C S, FRIISMOSE A I, et al. Virtual magnetic resonance elastography predicts the intraoperative consistency of meningiomas[J]. J De Neuroradiol, 2023, 50(4): 396-401. DOI: 10.1016/j.neurad.2022.10.006.
BIHAN D L, BOWEN C, CLARKE S. Diffusion-based virtual MR elastography in subjects with nonalcoholic fatty liver disease[J]. J Magn Reson Imaging, 2023, 57(2): 648-649. DOI: 10.1002/jmri.28304.
JUNG H N, RYOO I, SUH S, et al. Evaluating the elasticity of metastatic cervical lymph nodes in head and neck squamous cell carcinoma patients using DWI-based virtual MR elastography[J/OL]. Magn Reson Med Sci, 2022 [2023-7-21]. DOI: 10.2463/
OTA T, HORI M, LE BIHAN D, et al. Diffusion-based virtual MR elastography of the liver: can it be extended beyond liver fibrosis?[J]. J Clin Med, 2021, 10(19): 4553 [2023-7-21]. DOI: 10.3390/jcm10194553.
General Office of the National Health Commission of the People's Republic of China. Guidelines for diagnosis and treatment of primary liver cancer (2022 edition)[J]. Chin J Surg, 2022, 60(4): 273-309. DOI: 10.3760/cma.j.cn112139-20220217-00068.
EUROPEAN ASSOCIATION FOR THE STUDY OF THE LIVER EASL). EASL Clinical Practice Guidelines on the management of benign liver tumours[J]. J Hepatol, 2016, 65(2): 386-398. DOI: 10.1016/j.jhep.2016.04.001.
KROMREY M L, BIHAN D L, ICHIKAWA S, et al. Diffusion-weighted MRI-based virtual elastography for the assessment of liver fibrosis[J]. Radiology, 2020, 295(1): 127-135. DOI: 10.1148/radiol.2020191498.
LAGERSTRAND K, GAEDES N, ERIKSSON S, et al. Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency[J]. Pituitary, 2021, 24(4): 530-541. DOI: 10.1007/s11102-021-01129-4.
TAOULI B, TOLIA A J, LOSADA M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience[J]. AJR Am J Roentgenol, 2007, 189(4): 799-806. DOI: 10.2214/AJR.07.2086.
FU F F, LI X D, LIU Q Y, et al. Noninvasive DW-MRI metrics for staging hepatic fibrosis and grading inflammatory activity in patients with chronic hepatitis B[J]. Abdom Radiol, 2021, 46(5): 1864-1875. DOI: 10.1007/s00261-020-02801-2.
CHAUDHURI O, COOPER-WHITE J, JANMEY P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822): 535-546. DOI: 10.1038/s41586-020-2612-2.
GUO J, SAVIC L J, HILLEBRANDT K H, et al. MR elastography in cancer[J]. Invest Radiol, 2023, 58(8): 578-586. DOI: 10.1097/RLI.0000000000000971.
HENNEDIGE T P, HALLINAN J T, LEUNG F P, et al. Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions[J]. Eur Radiol, 2016, 26(2): 398-406. DOI: 10.1007/s00330-015-3835-8.
SHAHRYARI M, TZSCHÄTZSCH H, GUO J, et al. Tomoelastography distinguishes noninvasively between benign and malignant liver lesions[J]. Cancer Res, 2019, 79(22): 5704-5710. DOI: 10.1158/0008-5472.CAN-19-2150.
GARTEISER P, DOBLAS S, DAIRE J L, et al. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation[J]. Eur Radiol, 2012, 22(10): 2169-2177. DOI: 10.1007/s00330-012-2474-6.
PARASARAM V, CIVALE J, BAMBER J C, et al. Preclinical three-dimensional vibrational shear wave elastography for mapping of tumour biomechanical properties in vivo[J/OL]. Cancers, 2022, 14(19): 4832 [2023-07-21]. DOI: 10.3390/cancers14194832.
JAMIN Y, BOULT J K R, LI J, et al. Exploring the biomechanical properties of brain malignancies and their pathologic determinants in vivo with magnetic resonance elastography[J]. Cancer Res, 2015, 75(7): 1216-1224. DOI: 10.1158/0008-5472.CAN-14-1997.
SHIMIZU T, YOSHIOKA M, KANEYA Y, et al. Management of simple hepatic cyst[J]. J Nippon Med Sch, 2022, 89(1): 2-8. DOI: 10.1272/jnms.JNMS.2022_89-115.
GAD M A M, ERAKY T E, OMAR H M, et al. Role of real-time shear-wave elastogarphy in differentiating hepatocellular carcinoma from other hepatic focal lesions[J]. Eur J Gastroenterol Hepatol, 2021, 33(3): 407-414. DOI: 10.1097/MEG.0000000000001741.
GERBER L, FITTING D, SRIKANTHARAJAH K, et al. Evaluation of 2D- shear wave elastography for characterisation of focal liver lesions[J]. J Gastrointestin Liver Dis, 2017, 26(3): 283-290. DOI: 10.15403/jgld.2014.1121.263.dsh.
CARPINO G, OVERI D, MELANDRO F, et al. Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure[J/OL]. Clin Proteomics, 2019, 16: 37 [2023-07-21]. DOI: 10.1186/s12014-019-9257-x.
AFFO S, NAIR A, BRUNDU F, et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations[J]. Cancer Cell, 2021, 39(6): 866-882. DOI: 10.1016/j.ccell.2021.05.010.
GUO J, JIANG D, QIAN Y, et al. Differential diagnosis of different types of solid focal liver lesions using two-dimensional shear wave elastography[J]. World J Gastroenterol, 2022, 28(32): 4716-4725. DOI: 10.3748/wjg.v28.i32.4716.
PARK H, PARK J Y, KIM D Y, et al. Characterization of focal liver masses using acoustic radiation force impulse elastography[J]. World J Gastroenterol, 2013, 19(2): 219-226. DOI: 10.3748/wjg.v19.i2.219.
O'SHEA A, PIERCE T T. US elastography in hepatic fibrosis- Radiology in training[J]. Radiology, 2021, 299(2): 264-271. DOI: 10.1148/radiol.2021203893.
HUI R W, CHAN A C, LO G, et al. Magnetic resonance elastography and proton density fat fraction predict adverse outcomes in hepatocellular carcinoma[J]. Hepatol Int, 2022, 16(2): 371-380. DOI: 10.1007/s12072-022-10305-y.
ZHANG L N, CHEN J B, JIANG H, et al. MR elastography as a biomarker for prediction of early and late recurrence in HBV-related hepatocellular carcinoma patients before hepatectomy[J/OL]. Eur J Radiol, 2022, 152: 110340 [2023-7-21]. DOI: 10.1016/j.ejrad.2022.110340.
ZHANG L N, LI M S, ZHU J, et al. The value of quantitative MR elastography-based stiffness for assessing the microvascular invasion grade in hepatocellular carcinoma[J]. Eur Radiol, 2023, 33(6): 4103-4114. DOI: 10.1007/s00330-022-09290-5.

PREV Diagnostic value analysis of multimodal magnetic resonance imaging combined with prognostic factors in HER-2 low expression breast cancer
NEXT Preliminary study on the diagnosis of 3D BH-GRASE sequence MRCP in extrahepatic cholelithiasis

Tel & Fax: +8610-67113815    E-mail: