Share this content in WeChat
Research progress of t-ASL in cerebrovascular related diseases
LIU Jiangjing  ZHOU Zhipeng 

Cite this article as: LIU J J, ZHOU Z P. Research progress of t-ASL in cerebrovascular related diseases[J]. Chin J Magn Reson Imaging, 2023, 14(10): 162-166. DOI:10.12015/issn.1674-8034.2023.10.029.

[Abstract] Territorial arterial spin labeling (t-ASL) is a novel magnetic resonance perfusion technique that effectively evaluates the regional blood flow perfusion of responsible blood supply arteries in intracranial vascular diseases by selectively labeling a single responsible blood supply artery without the need for injection of exogenous contrast agents. This article reviews the technical principles of t-ASL and its applications, limitations, and future development directions in cerebrovascular diseases, intracranial tumors, and non atherosclerotic encephalopathy. It provides important support for the early diagnosis, individualized treatment, and prognosis of patients with intracranial vascular and non vascular diseases, and provides new ideas and directions for clinical practice and research.
[Keywords] territorial arterial spin labeling;brain perfusion imaging;magnetic resonance imaging;ischemic stroke;Moyamoya disease;arteriovenous malformation;meningioma;non atherosclerotic encephalopathy;responsible blood supply artery;collateral circulation

LIU Jiangjing   ZHOU Zhipeng*  

Department of Radiology, Affliatated Hospital of Guilin University, Guilin 541001, China

Corresponding author: ZHOU Z P, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81760219).
Received  2022-10-14
Accepted  2023-09-25
DOI: 10.12015/issn.1674-8034.2023.10.029
Cite this article as: LIU J J, ZHOU Z P. Research progress of t-ASL in cerebrovascular related diseases[J]. Chin J Magn Reson Imaging, 2023, 14(10): 162-166. DOI:10.12015/issn.1674-8034.2023.10.029.

Chinese Society of Neurology, Chinese Stroke Society, Neurovascular Intervention Group of Chinese Society of Neurology. Chinese guidelines for the endovascular treatment of acute ischemic stroke 2022[J]. Chin J Neurol, 2022, 55(6): 565-580. DOI: 10.3760/cma.j.cn113694-20220225-00137.
TUO Q Z, ZHANG S T, LEI P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications[J]. Med Res Rev, 2022, 42(1): 259-305. DOI: 10.1002/med.21817.
MENDELSON S J, PRABHAKARAN S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: A review[J]. JAMA, 2021, 325(11): 1088-1098. DOI: 10.1001/jama.2020.26867.
WANG B , YU P , LIN W, et al. MicroRNA-21-5p reduces hypoxia/reoxygenation-induced neuronal cell damage through negative regulation of CPEB3[J/OL]. Anal Cell Pathol (Amst), 2021, 2021: 5543212 [2023-09-19]. DOI: 10.1155/2021/5543212.
WEAVER N A, KUIJF H J, ABEN H P, et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts[J]. Lancet Neurol, 2021, 20(6): 448-459. DOI: 10.1016/S1474-4422(21)00060-0.
WILLIAMS D S, DETRE J A, LEIGH J S, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Magn Reson Med, 1993, 30(3): 361-365. DOI: 10.1002/mrm.1910300314.
SHI C Y, CHEN J, ZHANG C C, et al. TOF-MRA, 3D-ASL joint region selected ASL to evaluate blood flow after vascular reconstruction of moyamoya disease[J]. Chin J Magn Reson Imaging, 2020, 11(9): 735-740. DOI: 10.12015/issn.1674-8034.2020.09.004.
ZHOU J, SHAN Y, HU P. A systematic review and meta-analysis on transcranial Doppler in diagnosing ischemic cerebrovascular disease[J]. Ann Palliat Med, 2021, 10(8): 8963-8971. DOI: 10.21037/apm-21-1759.
XIANG S, FAN F, HU P, et al. The sensitivity and specificity of TOF-MRA compared with DSA in the follow-up of treated intracranial aneurysms[J]. J Neurointerv Surg, 2021, 13(12): 1172-1179. DOI: 10.1136/neurintsurg-2020-016788.
XU J W, ZHENG S S, WU Z S, et al. Study on the diagnostic value of multimodal energy spectrum CT one-stop head and neck angiography for acute posterior circulation cerebral ischemia[J]. J Clin Radiol, 2021, 40(8): 1480-1486. DOI: 10.13437/j.cnki.jcr.2021.08.009.
LEE S J, LIU B, RANE N, et al. Correlation between CT angiography and digital subtraction angiography in acute ischemic strokes[J/OL]. Clin Neurol Neurosurg, 2021, 200: 106399 [2023-09-19]. DOI: 10.1016/j.clineuro.2020.106399.
WANG L R, GAO Z G, LU J F. Evaluation value of double label delay time 3D ASL in cerebral vascular stenosis perfusion compensation[J]. J Med Imaging, 2021, 31(4): 546-549.
JIANG H L, SU W, CHEN H Y, et al. Application value of arterial spin labeling imaging with dual parameters in evaluating collateral circulation and prognosis of acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2023, 14(3): 53-57, 80. DOI: 10.12015/issn.1674-8034.2023.03.010.
XU J, ZHANG Y X, WU H Y, et al. Study on the application of double low gem energy spectrum CT in brain CTA[J]. Radiol Pract, 2022, 37(3): 297-301. DOI: 10.13609/j.cnki.1000-0313.2022.03.003.
SHRESTHA S, BAO H, GU H, et al. Association of dissection features and primary collateral circulation with ischemic stroke in patients with spontaneous internal carotid artery dissection: evaluated using vessel wall-MRI and MRA[J/OL]. Br J Radiol, 2022, 95(1137): 20210845 [2023-03-19]. DOI: 10.1259/bjr.20210845.
QIN Q, ALSOP D C, BOLAR D S, et al. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation[J]. Magn Reson Med, 2022, 88(4): 1528-1547. DOI: 10.1002/mrm.29371.
DOLUI S, VIDORRETA M, WANG Z, et al. Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment[J]. Hum Brain Mapp, 2017, 38(10): 5260-5273. DOI: 10.1002/hbm.23732.
LINDNER T, HELLE M, JANSEN O. A short introduction to arterial spin labeling and its application to flow territory mapping[J]. Clin Neuroradiol, 2015, 25(Suppl 2): 211-218. DOI: 10.1007/s00062-015-0450-7.
SUZUKI Y, VAN OSCH M J P, FUJIMA N, et al. Optimization of the spatial modulation function of vessel-encoded pseudo-continuous arterial spin labeling and its application to dynamic angiography[J]. Magn Reson Med, 2019, 81(1): 410-423. DOI: 10.1002/mrm.27418.
YOO D H, SOHN C H, CHO Y D, et al. Superselective pseudocontinuous arterial spin labeling in patients with meningioma: utility in prediction of feeding arteries and preoperative embolization feasibility[J]. J Neurosurg, 2021, 135(3): 828-834. DOI: 10.3171/2020.7.Jns201915.
WANG K, MA S J, SHAO X, et al. Optimization of pseudo-continuous arterial spin labeling at 7T with parallel transmission B1 shimming[J]. Magn Reson Med, 2022, 87(1): 249-262. DOI: 10.1002/mrm.28988.
LIU J, LIN C, MINUTI A, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
OUMER M, ALEMAYEHU M, MUCHE A. Association between circle of Willis and ischemic stroke: a systematic review and meta-analysis[J/OL]. BMC Neurosci, 2021, 22(1): 3 [2023-04-27]. DOI: 10.1186/s12868-021-00609-4.
HARTKAMP N S, HENDRIKSE J, COCKER L D, et al. Misinterpretation of ischaemic infarct location in relationship to the cerebrovascular territories[J]. J Neurol Neurosurg Psychiatry, 2016, 87(10): 1084-1090. DOI: 10.1136/jnnp-2015-312906.
CASTELLANA G, CASTELLANA M, CASTELLANA C, et al. Inhaled Corticosteroids And Risk Of Tuberculosis In Patients With Obstructive Lung Diseases: A systematic review and meta-analysis of non-randomized studies[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14: 2219-2227. DOI: 10.2147/copd.S209273.
STEINER L, FEDERSPIEL A, JAROS J, et al. Cerebral blood flow and cognitive outcome after pediatric stroke in the middle cerebral artery[J/OL]. Sci Rep, 2021, 11(1): 19421 [2023-04-27]. DOI: 10.1038/s41598-021-98309-w.
SALERNO A, STRAMBO D, NANNONI S, et al. Patterns of ischemic posterior circulation strokes: A clinical, anatomical, and radiological review[J]. Int J Stroke, 2022, 17(7): 714-722. DOI: 10.1177/17474930211046758.
VAN NIFTRIK C H B, VISSER T F, SEBÖK M, et al. Delayed cerebral atrophy after cerebellar stroke: topographical relation and clinical impact[J/OL]. Brain Commun, 2021, 3(4): fcab279 [2022-10-14]. DOI: 10.1093/braincomms/fcab279.
HARTKAMP N S, HENDRIKSE J, DE BORST G J, et al. Intracerebral steal phenomenon in symptomatic carotid artery disease[J]. J Neuroradiol, 2019, 46(3): 173-178. DOI: 10.1016/j.neurad.2018.09.008.
SEBÖK M, NIFTRIK C, LOHAUS N, et al. Leptomeningeal collateral activation indicates severely impaired cerebrovascular reserve capacity in patients with symptomatic unilateral carotid artery occlusion[J]. J Neuroradiol, 2021, 41(11): 3039-3051. DOI: 10.1177/0271678x211024373.
LI J, SHAO G R, HUANG L, et al. ASL and t-ASL imaging in evaluating collateral circulation after unilateral middle cerebral artery occlusion[J]. J Pract Radiol, 2022, 38(7): 1061-1064. DOI: 10.3969/j.issn.1002-1671.2022.07.004.
ZÜRCHER E, RICHOZ B, FAOUZI M, et al. Differences in Ischemic Anterior and Posterior Circulation Strokes: A Clinico-Radiological and Outcome Analysis[J]. J Stroke Cerebrovasc Dis, 2019, 28(3): 710-718. DOI: 10.1016/j.jstrokecerebrovasdis.2018.11.016.
KIM B J, LEE K M, KIM H Y, et al. Basilar Artery Plaque and Pontine Infarction Location and Vascular Geometry[J]. J Stroke, 2018, 20(1): 92-98. DOI: 10.5853/jos.2017.00829.
JOHANSSON E, AVIV R I, FOX A J. Atherosclerotic ICA stenosis coinciding with ICA asymmetry associated with circle of willis variations can mimic near-occlusion[J]. Neuroradiology, 2020, 62(1): 101-104. DOI: 10.1007/s00234-019-02309-7.
NG F C, COULTON B, CHAMBERS B, et al. Persistently elevated microvascular resistance postrecanalization[J]. Stroke, 2018, 49(10): 2512-2515. DOI: 10.1161/strokeaha.118.021631.
QIU Y H, HUANG L D, CHEN Q Y, et al. The value of FLAIR vascular hyperintensity-diffusion weighted imaging mismatch in assessing collateral circulation in acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2022, 13(3): 6-11, 65. DOI: 10.12015/issn.1674-8034.2022.03.002.
WANG X, DOU W, DONG D, et al. Can 3D pseudo‐continuous territorial arterial spin labeling effectively diagnose patients with recanalization of unilateral middle cerebral artery stenosis?[J]. J Magn Reson Imaging, 2021, 54(1): 175-183. DOI: 10.1002/jmri.27560.
YAMAMOTO D, HOSODA K, UCHIHASHI Y, et al. Perioperative changes in cerebral perfusion territories assessed by arterial spin labeling magnetic resonance imaging are associated with postoperative increases in cerebral blood flow in patients with carotid stenosis[J]. World Neurosurg, 2017, 102: 477-486. DOI: 10.1016/j.wneu.2017.03.037.
LIN T, LAI Z, LV Y, et al. Effective collateral circulation may indicate improved perfusion territory restoration after carotid endarterectomy[J]. Eur Radiol, 2018, 28(2): 727-735. DOI: 10.1007/s00330-017-5020-8.
DI NAPOLI A, CHENG S F, GREGSON J, et al. Arterial Spin Labeling MRI in carotid stenosis: arterial transit artifacts may predict symptoms[J]. Radiology, 2020, 297(3): 652-660. DOI: 10.1148/radiol.2020200225.
BANG O Y, CHUNG J W, KIM D H, et al. Moyamoya disease and spectrums of RNF213 vasculopathy[J]. Transl Stroke Res, 2020, 11(4): 580-589. DOI: 10.1007/s12975-019-00743-6.
GAO X, LI Q, LI J, et al. A perfusion territory shift attributable solely to the secondary collaterals in moyamoya patients: a potential risk factor for preoperative hemorrhagic stroke revealed by t-ASL and 3D-TOF-MRA[J]. J Neurosurg, 2020, 133(3): 780-788. DOI: 10.3171/2019.5.JNS19803.
HWANG I, CHO W S, YOO R E, et al. Revascularization evaluation in adult-onset Moyamoya disease after bypass surgery: superselective arterial spin labeling Perfusion MRI compared with digital subtraction angiography[J]. Radiology, 2020, 297(3): 630-637. DOI: 10.1148/radiol.2020201448.
YUAN J, QU J, ZHANG D, et al. Cerebral Perfusion Territory Changes After Direct Revascularization Surgery in Moyamoya Disease: A territory arterial spin labeling study[J/OL]. World Neurosurg, 2019, 122: e1128-e1136 [2022-10-13]. DOI: 10.1016/j.wneu.2018.11.002.
TOGAO O, OBARA M, HELLE M, et al. Vessel-selective 4D-MR angiography using super-selective pseudo-continuous arterial spin labeling may be a useful tool for assessing brain AVM hemodynamics[J]. Eur Radiol, 2020, 30(12): 6452-6463. DOI: 10.1007/s00330-020-07057-4.
LU Y, LUAN S, LIU L, et al. Evaluation of the applicability of territorial arterial spin labeling in meningiomas for presurgical assessments compared with 3-dimensional time-of-flight magnetic resonance angiography[J]. Eur Radiol, 2017, 27(10): 4072-4081. DOI: 10.1007/s00330-017-4760-9.
GUO Y Y, LV X Y, WU Y, et al. Cognitive function and cerebral blood perfusion changes in patients with anti-N-methyl-D-aspartate receptor encephalitis[J]. Natl Med J China, 2020, 100(25): 1942-1946. DOI: 10.3760/cma.j.cn112137-20200108-00050.

PREV Research progress of magnetic resonance vascular wall imaging in predicting ischemic stroke recurrence
NEXT Application of resting-state functional MRI in the study of mild traumatic brain injury

Tel & Fax: +8610-67113815    E-mail: