Share this content in WeChat
Clinical Article
The diagnostic value of constructing a nomogram mode based on the PI-RADS v2.1 score of Bp-MRI for predicting PSA (4-20 ng/mL) in prostate cancer
ZHANG Ruodi  ZHOU Yunshu  LIU Shili  CHEN Xiaohua  WANG Zhuo  ZHANG Shaoru  CHEN Zhiqiang 

Cite this article as: ZHANG R D, ZHOU Y S, LIU S L, et al. The diagnostic value of constructing a nomogram mode based on the PI-RADS v2.1 score of Bp-MRI for predicting PSA (4-20 ng/mL) in prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 84-89. DOI:10.12015/issn.1674-8034.2023.10.015.

[Abstract] Objective To construct a nomogram model for differential diagnosis of prostate cancer (PCa) with PSA (4-20 ng/mL) based on biparametric MRI (bp-MRI) of Prostate Imaging Report and Data System version 2.1 (PI-RADS v2.1) and other clinical indicators such as prostate specific antigen (PSA).Materials and Methods Retrospectively analyzed the data of 206 patients undergoing bp-MRI examination with pathological results between October 2017 and February 2022 in the General Hospital of Ningxia Medical University. The patients were divided into PCa group (n=66) and benign prostatic hyperplasia and / or inflammation group (n=140) according to the pathological results. The independent risk factors of PCa patients with PSA (4-20 ng/mL) were screened by univariate and multivariate logistic regression analysis, then the nomogram model was constructed by R software, and the clinical net benefit was analyzed by decision curve (DCA). Diagnostic performance was evaluated by using the area under the curve (AUC) of receiver operating characteristic (ROC) curve, sensitivity and specificity, and the differences between AUC values were compared by the DeLong test.Results Age, total prostate specific antigen (tPSA), prostate volume (PV), and PI-RADS v2.1 are independent risk factors for predicting PSA (4-20 ng/mL) PCa. The nomogram model based on the above four independent indexes shows the best performance (AUC=0.945), which is significantly higher than that of PI-RADS v2.1 (AUC=0.816), PV (AUC=0.772), tPSA (AUC=0.737) and age (AUC=0.680).Conclusions The diagnostic performance of the nomogram model based on PI-RADS v2.1 score of bp-MRI combined with clinical related indicators is significantly better than that of the single index to predict the PSA (4–20 ng/mL) PCa, and can be used as a non-invasive accurate prediction tool.It will predict the risk probability of PCa more comprehensively and accurately, and provide effective diagnosis and treatment guidance for clinicians.
[Keywords] prostate cancer;prostate specific antigen;Prostate Imaging Reporting and Data Scoring System version 2.1;nomogram;biparametric;magnetic resonance imaging

ZHANG Ruodi1   ZHOU Yunshu1   LIU Shili1   CHEN Xiaohua1   WANG Zhuo1   ZHANG Shaoru1   CHEN Zhiqiang1, 2, 3*  

1 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, the First Hospital Affiliated to Hainan Medical College, Haikou 570102, China

3 Clinical Medicine School of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: CHEN Z Q, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Research and Development Program of Ningxia Hui Autonomous Region (No. 2019BEG03033); Natural Science Foundation Program of Ningxia Hui Autonomous Region (No. 2022AAC03472).
Received  2023-05-18
Accepted  2023-10-07
DOI: 10.12015/issn.1674-8034.2023.10.015
Cite this article as: ZHANG R D, ZHOU Y S, LIU S L, et al. The diagnostic value of constructing a nomogram mode based on the PI-RADS v2.1 score of Bp-MRI for predicting PSA (4-20 ng/mL) in prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(10): 84-89. DOI:10.12015/issn.1674-8034.2023.10.015.

GURWIN A, KOWALCZYK K, KNECHT-GURWIN K, et al. Alternatives for MRI in prostate cancer diagnostics-review of current ultrasound-based techniques[J/OL]. Cancers, 2022, 14(8): 1859 [2023-03-11]. DOI: 10.3390/cancers14081859.
MIN S H, HU Y, GUO R Q, et al. Analysis of disease burden of prostate cancer in China from 1990 to 2019 and trend prediction[J]. China Cancer, 2023, 32(3): 171-177. DOI: 10.11735/j.issn.1004-0242.2023.03.A002.
DUFFY M J. Biomarkers for prostate cancer: prostate-specific antigen and beyond[J]. Clin Chem Lab Med, 2020, 58(3): 326-339. DOI: 10.1515/cclm-2019-0693.
WANG Z B, WEI C G, ZHANG Y Y, et al. The role of PSA density among PI-RADS v2.1 categories to avoid an unnecessary transition zone biopsy in patients with PSA 4-20 ng/mL[J/OL]. Biomed Res Int, 2021, 2021: 3995789 [2023-02-12]. DOI: 10.1155/2021/3995789.
MARTIN P R, COOL D W, FENSTER A, et al. A comparison of prostate tumor targeting strategies using magnetic resonance imaging-targeted, transrectal ultrasound-guided fusion biopsy[J]. Med Phys, 2018, 45(3): 1018-1028. DOI: 10.1002/mp.12769.
WANG C M, YUAN L, SHEN D Y, et al. Combination of PI-RADS score and PSAD can improve the diagnostic accuracy of prostate cancer and reduce unnecessary prostate biopsies[J/OL]. Front Oncol, 2022, 12: 1024204 [2023-03-11]. DOI: 10.3389/fonc.2022.1024204.
KANDIRALI E, TEMIZ M Z, ÇOLAKEROL A, et al. Does the prostate volume always effect cancer detection rate in prostate biopsy? Additional role of prostate-specific antigen levels: a retrospective analysis of 2079 patients[J]. Turk J Urol, 2019, 45(2): 103-107. DOI: 10.5152/tud.2018.66909.
CHEN M, MA T, LI J, et al. Diagnosis of prostate cancer in patients with prostate-specific antigen (PSA) in the gray area: Construction of 2 predictive models[J/OL]. Med Sci Monit, 2021, 27: e929913 [2023-03-11]. DOI: 10.12659/MSM.929913.
WANG H H, GAO G, HE Q, et al. Comparison of scores between PI-RADS v2.1 and PI-RADS v2 based on prostate slice-by-slice pathology[J]. Chin J Magn Reson Imag, 2022, 13(4): 120-123. DOI: 10.12015/issn.1674-8034.2022.04.023.
LUO R, ZENG Q X, CHEN H S. Artificial intelligence algorithm-based MRI for differentiation diagnosis of prostate cancer[J/OL]. Comput Math Methods Med, 2022, 2022: 8123643 [2023-02-12]. DOI: 10.1155/2022/8123643.
TURKBEY B, ROSENKRANTZ A B, HAIDER M A, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2[J]. Eur Urol, 2019, 76(3): 340-351. DOI: 10.1016/j.eururo.2019.02.033.
BARRETT T, RAJESH A, ROSENKRANTZ A B, et al. PI-RADS version 2.1: one small step for prostate MRI[J]. Clin Radiol, 2019, 74(11): 841-852. DOI: 10.1016/j.crad.2019.05.019.
PAN Y S, SHEN C, CHEN X F, et al. bpMRI and mpMRI for detecting prostate cancer: A retrospective cohort study[J/OL]. Front Surg, 2023, 9: 1096387 [2023-02-12]. DOI: 10.3389/fsurg.2022.1096387.
BREMBILLA G, GIGANTI F, SIDHU H, et al. Diagnostic accuracy of abbreviated Bi-parametric MRI (a-bpMRI) for prostate cancer detection and screening: A multi-reader study[J/OL]. Diagnostics, 2022, 12(2): 231 [2023-02-12]. DOI: 10.3390/diagnostics12020231.
SCIALPI M. Simplified PI-RADS-based biparametric MRI: A rationale for detecting and managing prostate cancer[J]. Clin Imaging, 2021, 80: 290-291. DOI: 10.1016/j.clinimag.2021.07.024.
HAN C, LIU S, QIN X B, et al. MRI combined with PSA density in detecting clinically significant prostate cancer in patients with PSA serum levels of 4∼10 ng/mL: Biparametric versus multiparametric MRI[J]. Diagn Interv Imaging, 2020, 101(4): 235-244. DOI: 10.1016/j.diii.2020.01.014.
CHANG T H, LIN W R, TSAI W K, et al. Zonal adjusted PSA density improves prostate cancer detection rates compared with PSA in Taiwan residents males with PSA<20 ng/ml[J/OL]. BMC Urol, 2020, 20(1): 151 [2022-12-12]. DOI: 10.1186/s12894-020-00717-z.
PAN M J, QI F, CHENG Y F, et al. The value of utilizing bpMRI in prostate biopsy in the detection of prostate cancer with PSA≤20 ng/ml[J]. Chin J Urol, 2021, 42(1): 18-22. DOI: 10.3760/cma.j.cn112330-20200302-00145.
LU J F, FENG L, BU R, et al. Effectiveness of magnetic resonance imaging-transrectal ultrasound-guided cognitive fusion targeted prostate biopsy combined with systematic prostate biopsy for prostate cancer patients with PSA Level 4-20 ng/m L[J]. J Mol Imag, 2021, 44(6): 932-936. DOI: 10.12122/j.issn.1674-4500.2021.06.09.
SCOTT R, MISSER S K, CIONI D, et al. PI-RADS v2.1: What has changed and how to report[J/OL]. SA J Radiol, 2021, 25(1): 2062 [2022-12-12]. DOI: 10.4102/sajr.v25i1.2062.
ZHAO Y Y, FANG C, WU S L, et al. Prediction and risk assessment of benign and malignant prostate lesions based on Bp-MRI radiomics[J]. Chin J Magn Reson Imag, 2022, 13(8): 43-47. DOI: 10.12015/issn.1674-8034.2022.08.008.
CUSSENOT O, RENARD-PENNA R, MONTAGNE S, et al. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk[J]. BJU Int, 2023, 131(6): 745-754. DOI: 10.1111/bju.15968.
MCCORMICK M E, HAILE Z T. The impact of receipt of information on prostate-specific antigen testing on screening with the prostate-specific antigen test[J]. J Cancer Educ, 2023, 38(4): 1313-1321. DOI: 10.1007/s13187-023-02264-1.
KNAAPILA J. Editorial for "biparametric magnetic resonance imaging-derived nomogram to detect clinically significant prostate cancer by targeted biopsy for index lesion"[J]. J Magn Reson Imaging, 2022, 56(2): 425-426. DOI: 10.1002/jmri.27897.
PORTER K K, KING A, GALGANO S J, et al. Financial implications of biparametric prostate MRI[J]. Prostate Cancer Prostatic Dis, 2020, 23(1): 88-93. DOI: 10.1038/s41391-019-0158-x.
SUSHENTSEV N, CAGLIC I, SALA E, et al. The effect of capped biparametric magnetic resonance imaging slots on weekly prostate cancer imaging workload[J/OL]. Br J Radiol, 2020, 93(1108): 20190929 [2022-12-12]. DOI: 10.1259/bjr.20190929.
ALABOUSI M, SALAMEH J P, GUSENBAUER K, et al. Biparametric vs multiparametric prostate magnetic resonance imaging for the detection of prostate cancer in treatment-naïve patients: a diagnostic test accuracy systematic review and meta-analysis[J]. BJU Int, 2019, 124(2): 209-220. DOI: 10.1111/bju.14759.
WANG G, YU G, CHEN J, et al. Can high b-value 3.0 T biparametric MRI with the Simplified Prostate Image Reporting and Data System (S-PI-RADS) be used in biopsy-naïve men?[J]. Clin Imaging, 2022, 88: 80-86. DOI: 10.1016/j.clinimag.2021.06.024.
TAMADA T, KIDO A, YAMAMOTO A, et al. Comparison of biparametric and multiparametric MRI for clinically significant prostate cancer detection with PI-RADS version 2.1[J]. J Magn Reson Imag, 2021, 53(1): 283-291. DOI: 10.1002/jmri.27283.
WEN J, TANG T T, JI Y G, et al. PI-RADS v2.1 combined with prostate-specific antigen density for detection of prostate cancer in peripheral zone[J/OL]. Front Oncol, 2022, 12: 861928 [2023-2-12]. DOI: 10.3389/fonc.2022.861928.
MA Z N, WANG X C, ZHANG W C, et al. Developing a predictive model for clinically significant prostate cancer by combining age, PSA density, and mpMRI[J/OL]. World J Surg Oncol, 2023, 21(1): 83 [2023-3-15]. DOI: 10.1186/s12957-023-02959-1.
FAN D M. CACA Guidelines for holistic lntegrative management of cancer[M]. Tianjin: Tianjin Scientific & Technical Publishers, 2022: 1-68.

PREV Application value of synthetic MRI in the differential diagnosis of benign and malignant breast lesions with peripheral rim enhancement
NEXT Diagnosis value of BP-MRI combined clinical predictors for prostate cancer

Tel & Fax: +8610-67113815    E-mail: