Share:
Share this content in WeChat
X
Clinical Article
Application value of 3.0 T MAGIC relaxation time quantitative technique in neonates with acute bilirubin encephalopathy
LI Yan  ZHANG Xiaoyu  LIU Lingling  LI Peng  LIU Shili  CHEN Zhiqiang  Zhang Shening  QIU Yinping  YANG Ping 

Cite this article as: LI Y, ZHANG X Y, LIU L L, et al. Application value of 3.0 T MAGIC relaxation time quantitative technique in neonates with acute bilirubin encephalopathy[J]. Chin J Magn Reson Imaging, 2023, 14(10): 65-70, 97. DOI:10.12015/issn.1674-8034.2023.10.012.


[Abstract] Objective To investigate the application value of MAGIC relaxation time quantitative technique in the evaluation of acute bilirubin encephalopathy (ABE).Materials and Methods Thirty-two children with confirmed ABE (ABE group) admitted to the PICU of Ningxia Medical University for jaundice from October 2020 to June 2022, 71 children with hyperbilirubinemia (hyperbilirubinemia group), and 44 normal-term children (control group) as the study subjects. All the included subjects completed cranial MAGIC examination in our hospital within 10 days after birth, and measured the relaxation value T1, T2 andproton density (PD) values in 6 areas of interest (ROI), including bilateral glous pallidus, putamen, ventrolateral thalamic nucleus, posterior limb of internal capsule, anterior limb of internal capsule, pedunculus cerebri. The values of T1, T2 and PD among all groups were compared by one-way variance analysis; the area under the curve (AUC), optimal critical value, sensitivity, specificity and Yoden index of ABE were analyzed by receiver operating characteristic (ROC) curve; Pearson correlation was used to analyze the correlation between T1, T2, PD and total serum bilirubin (TSB) in each area of interest.Results The values of T1 and T2 in the globus pallidus were statistically significant among the three groups (P<0.05), which were the lowest in ABE, followed by the high bile group, and the highest in the control group. The T1 and T2 values of the posterior limb of the internal capsule and the T1 values of the pedunculus cerebral were statistically different among the three groups (P<0.05), with the highest value in the ABE group, followed by the high bile group, and the lowest in the control group. In T1, the pallidum AUC (0.977) had the highest sensitivity (95.3%), specificity (92.0%), the posterior limb and the cerebral foot; in T2, the pallidum AUC (0.880), the posterior capsule AUC (0.857), the slightly higher pallidum specificity (82.1%), and the internal capsule (79.1%). T1 values of the globus pallidus were negatively correlated with TSB (r=-0.541, P<0.05), and T1 values of the posterior limb of the internal capsule and the peduncle were positively correlated with TSB (r=0.503, 0.384, all P<0.05).Conclusions Relaxation time quantitative technique of MAGIC has high clinical value in the diagnosis of neonatal ABE. The measurement of T1 and T2 values of the globus pallidus, posterior limb of the internal capsule and the T1 values of the cerebral pedicle can provide objective and quantitative imaging reference basis for the early clinical diagnosis of neonatal ABE.
[Keywords] newborn;hyperbilirubinemia;bilirubin encephalopathy;integrated magnetic resonance imaging;magnetic resonance imaging;globus pallidus

LI Yan1   ZHANG Xiaoyu1   LIU Lingling1   LI Peng1   LIU Shili1   CHEN Zhiqiang1, 2*   Zhang Shening1   QIU Yinping3   YANG Ping3  

1 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, the First Affiliated Hospital of Hainan Medical College, Haikou 570100, China

3 Department of Neonatology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: CHEN Z Q, E-mail: zhiqiang_chen99@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Key Research and Development Program of the Ningxia Hui Autonomous Region (No. 2019BEG03033);Natural Science Foundation of the Ningxia Hui Autonomous Region (No. 2022AAC03472); University-level Project of Ningxia Medical University (No. XM2021071).
Received  2023-04-17
Accepted  2023-09-28
DOI: 10.12015/issn.1674-8034.2023.10.012
Cite this article as: LI Y, ZHANG X Y, LIU L L, et al. Application value of 3.0 T MAGIC relaxation time quantitative technique in neonates with acute bilirubin encephalopathy[J]. Chin J Magn Reson Imaging, 2023, 14(10): 65-70, 97. DOI:10.12015/issn.1674-8034.2023.10.012.

[1]
OLUSANYA B O, KAPLAN M, HANSEN T W R. Neonatal hyperbilirubinaemia: a global perspective[J]. Lancet Child Adolesc Health, 2018, 2(8): 610-620. DOI: 10.1016/S2352-4642(18)30139-1.
[2]
PRANTY A I, SHUMKA S, ADJAYE J. Bilirubin-induced neurological damage: current and emerging iPSC-derived brain organoid models[J/OL]. Cells, 2022, 11(17): 2647 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/36078055/. DOI: 10.3390/cells11172647.
[3]
WU M, SHEN X, LAI C, et al. Detecting neonatal acute bilirubin encephalopathy based on T1-weighted MRI images and learning-based approaches[J/OL]. BMC Med Imaging, 2021, 21(1): 103 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/34158001/. DOI: 10.1186/s12880-021-00634-z.
[4]
WU M, SHEN X, LAI C, et al. Detecting acute bilirubin encephalopathy in neonates based on multimodal MRI with deep learning[J]. Pediatr Res, 2022, 91(5): 1168-1175. DOI: 10.1038/s41390-021-01560-0.
[5]
LU Z, DING S, WANG F, et al. Analysis on the MRI and BAEP results of neonatal brain with different levels of bilirubin[J/OL]. Front Pediatr, 2022, 9: 719370 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/35174111/. DOI: 10.3389/fped.2021.719370.
[6]
OKUMURA A, KITAI Y, ARAI H. Magnetic resonance imaging abnormalities during the neonatal period in preterm infants with bilirubin encephalopathy[J]. Pediatr Neonatol, 2021, 62(5): 567-568. DOI: 10.1016/j.pedneo.2021.03.013.
[7]
LIU G, PENG H B, XIAO Z B, et al. The clinical significance of globus pallidus MRI signal intensity in the early identification of neonatal bilirubin encephalopathy[J]. Chin J Neonatol, 2020, 35(1): 10-15. DOI: 10.3760/cma.j.issn.2096-2932.2020.01.004.
[8]
TAN W T, LUO Y, SUN W S, et al. Diagnosis of neonatal bilirubin encephalopathy based on quantitative analysis of multiparameter magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(2): 27-32. DOI: 10.12015/issn.1674-8034.2023.02.005.
[9]
LIU H, ZHANG R L, ZHANG M, et al. Diagnostics value of quantitative magnetic resonance imaging (MRI) in neonatal acute bilirubin encephalopathy[J]. J Child Neurol, 2023, 38(3-4): 153-160. DOI: 10.1177/08830738231168514.
[10]
ZHANG F, CHEN L, SHANG S, et al. A clinical prediction rule for acute bilirubin encephalopathy in neonates with extreme hyperbilirubinemia: A retrospective cohort study[J/OL]. Medicine (Baltimore), 2020, 99(9): e19364 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/32118780/. DOI: 10.1097/md.0000000000019364.
[11]
YI M G, JIANG Z Q, ZHAO J S, et al. The value of T1WI signal intensity ratio of globus pallidus to putamen in grading and predicting prognosis of neon atal acute bilirubin encephalopathy[J]. Chin J Radiol, 2017, 51(3): 214-218. DOI: 10.3760/cma.j.issn.1005-1201.2017.03.013.
[12]
LI W K, LIU H G, LU S, et al. Diagnostic value of conventional MRI combined with diffusion-weighted imaging in neonatal bilirubin encepha-lopathy[J]. Clin J Med Off, 2021, 49(3): 347-349. DOI: 10.16680/j.1671-3826.2021.03.41.
[13]
ZHANG C, ZHAO X, CHENG M, et al. The effect of intraventricular hemorrhage on brain development in premature infants: A synthetic MRI study[J/OL]. Front Neurol, 2021, 12: 721312 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/34566865/. DOI: 10.3389/fneur.2021.721312.
[14]
COBAN G, GUMELER E, PARLAK S, et al. Synthetic MRI in children with tuberous sclerosis complex[J/OL]. Insights Imaging, 2022, 13(1): 115 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/35796889/. DOI: 10.1186/s13244-022-01219-2.
[15]
ANDRÉ J, BARRIT S, JISSENDI P. Synthetic MRI for stroke: a qualitative and quantitative pilot study[J/OL]. Sci Rep, 2022, 12(1): 11552 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/35798771/. DOI: 10.1038/s41598-022-15204-8.
[16]
KIM H G, CHOI J W, LEE J H, et al. Association of cerebral blood flow and brain tissue relaxation time with neurodevelopmental outcomes of preterm neonates: Multidelay arterial spin labeling and synthetic MRI study[J]. Invest Radiol, 2022, 57(4): 254-262. DOI: 10.1097/RLI.0000000000000833.
[17]
Neonatal Group, Pediatrics Branch of Chinese Medical Association, Editorial Committee of Chinese Journal of Pediatrics. Expert consensus on diagnosis and treatment of neonatal hyperbilirubinemia[J]. Chin J Pediatr, 2014, 52(10): 745-748. DOI: 10.3760/cma.j.issn.0578-1310.2014.10.006.
[18]
SHANGGUAN W N, YIN N, ZUO Y X, et al. Expert consensus on outdoor anesthesia/sedation for pediatric surgery[EB/OL]. [2023-08-20]. http://www.csahq.cn/guide/detail-394.html.
[19]
YAN R F, HAN D M, REN J P, et al. Diagnostic value of conventional MRIcombined with DTI for neonatal hyperbilirubinemia[J]. Pediatr Neon-atol, 2018, 59(2): 161-167. DOI: 10.1016/j.pedneo.2017.07.009.
[20]
XU J, YANG D J, HUANG F R, et al. Application of magnetic resonance diffusion tensor imaging in bilirubin-induced neurological dysfunction in neonates[J]. Chin J Contemp Pediatr, 2020, 22(7): 711-715. DOI: 10.7499/j.issn.1008-8830.2003139.
[21]
LI W, REN Z Q, TIAN H Z, et al. The application value of MR T1 mapping in the diagnosis of neonatal hyperbilirubinemia brain injury[J]. J Pract Radio, 2022, 38(5): 818-821. DOI: 10.3969/j.issn.1002-1671.2022.05.029.
[22]
LI X, MENG X L, ZHANG L, et al. Quantitative assessment of neonatal hyperb-ilirubinemia brain injury based on T1 mapping[J]. Chin J CT & MRI, 2022, 20(3): 4-7. DOI: 10.3969/j.issn.1672-5131.2022.03.002.
[23]
ZHENG H, LIN J, LIN Q, et al. Magnetic resonance image of neonatal acute bilirubin encephalopathy: A diffusion kurtosis imaging study[J/OL]. Front Neurol, 2021, 12: 645534 [2023-04-16]. https://pubmed.ncbi.nlm.ih.gov/34512498/. DOI: 10.3389/fneur.2021.645534.
[24]
BIN-NUN A, MIMOUNI F B, KASIRER Y, et al. Might bilirubin serve as a natural antioxidant in response to neonatal encephalopathy?[J]. Am J Perinatol, 2018, 35(11): 1107-1112. DOI: 10.1055/s-0038-1641746.
[25]
MOREL B, PIREDDA G F, COTTIER J P, et al. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition[J]. Eur Radiol, 2021, 31(3): 1505-1516. DOI: 10.1007/s00330-020-07194-w.
[26]
LOU B, JIANG Y, LI C, et al. Quantitative analysis of synthetic magnetic resonance imaging in Alzheimer's disease[J/OL]. Front Aging Neurosci, 2021, 13: 638731 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/33912023/. DOI: 10.3389/fnagi.2021.638731.
[27]
XIE J P, ZHANG W D, ZHU J Y, et al. The clinical value of T1 and T2 values in predicting brain glioma grading and cell proliferation activity[J]. Chin J Magn Reson Imaging, 2021, 12(1): 15-20. DOI: 10.12015/issn.1674-8034.2021.01.004.
[28]
HANSEN T, WONG R J, STEVENSON D K. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, Intestine, and brain in the new-born[J]. Physiol Rev, 2020, 100(3): 1291-1346. DOI: 10.1152/physrev.00004.2019.
[29]
MENG X L, ZHANG L, WANG X H, et al. Analysis of MRI signal characteristics of neonatal severe hyperbilirubinemia[J]. Chin J Magn Reson Imaging, 2018, 9(10): 768-772. DOI: 10.12015/issn.1674-8034.2018.10.010.
[30]
VANDERHASSELT T, ZOLFAGHARI R, NAEYAERT M, et al. Synthetic MRI demonst-rates prolonged regional relaxation times in the brain of preterm born neonates with severe postnatal morbidity[J/OL]. Neuroimage Clin, 2021, 29: 102544 [2023-04-16]. https://pubmed.ncbi.nlm.nih.gov/33385883/. DOI: 10.1016/j.nicl.2020.102544.

PREV Value of arterial spin labeling and diffusion tensor imaging in evaluating IDH1 gene phenotype in gliomas
NEXT Predicting the efficacy of neoadjuvant chemotherapy for breast cancer by combining hormone receptor and human epidermal growth factor receptor 2 with ADC maximum
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn