Share this content in WeChat
Clinical Article
The study of diagnosing the Parkinson's disease based on substantia nigra radiomics on susceptibility-weighted imaging
GU Xiang  PENG Mingyang  CHEN Yuchen  Yin Xindao  CHEN Guozhong  REN Jun 

Cite this article as: GU X, PENG M Y, CHEN Yuchen, et al. The study of diagnosing the Parkinson's disease based on substantia nigra radiomics on susceptibility-weighted imaging[J]. Chin J Magn Reson Imaging, 2023, 14(10): 26-30. DOI:10.12015/issn.1674-8034.2023.10.005.

[Abstract] Objective To explore the value of the substantia nigra radiomics on susceptibility-weighted imaging (SWI) and machine learning in diagnosing the Parkinson's disease (PD).Materials and Methods SWI images of 80 early PD patients and 80 healthy controls were collected. The ITK-SNAP software was used to delineate the regions of interest in substantia nigra on SWI, and extract and screen radiomics. Five machine learning methods (support vector machine, logistic regression analysis, random forest, Bayesian, K-nearest neighbor) were used to build the diagnosis model for Parkinson's disease, and the model with best diagnosis efficiency and most stable was selected for verification, and compared with the diagnosis efficiency of visual analysis of swallow tail sign.Results A total of 7 radiomic features closely related to Parkinson's disease were screened. In the training set, the diagnostic performance of the logistic regression analysis model is the best (AUC=0.975) and the most stable (relative standard deviations of AUC: 4%). In the test set, the AUC of logistic regression analysis model for diagnosing PD was 0.938, the sensitivity was 83.3%, and the specificity was 95.8%, which was significantly better than that of visual analysis (Z=2.241, P=0.025).Conclusions A logistic regression analysis model based on substantia nigra radiomics on SWI can accurately diagnose PD and provide image guidance for early intervention treatment in clinical.
[Keywords] Parkinson's disease;substantia nigra;susceptibility-weighted imaging;radiomic;machine learning

GU Xiang1   PENG Mingyang2   CHEN Yuchen2   Yin Xindao2   CHEN Guozhong2   REN Jun2*  

1 Department of Imaging, Nanjing Gaochun People's Hospital, Nanjing 211300, China

2 Department of Radiology, Nanjing Hospital Affiliated to Nanjing Medical University (Nanjing First Hospital), Nanjing 210006, China

Corresponding author: REN J, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82001811); Natural Science Foundation of Jiangsu Province (No. BK20201118).
Received  2023-04-11
Accepted  2023-09-26
DOI: 10.12015/issn.1674-8034.2023.10.005
Cite this article as: GU X, PENG M Y, CHEN Yuchen, et al. The study of diagnosing the Parkinson's disease based on substantia nigra radiomics on susceptibility-weighted imaging[J]. Chin J Magn Reson Imaging, 2023, 14(10): 26-30. DOI:10.12015/issn.1674-8034.2023.10.005.

DE PABLO-FERNÁNDEZ E, LEES A J, HOLTON J L, et al. Prognosis and Neuropathologic Correlation of Clinical Subtypes of Parkinson Disease[J]. JAMA Neurol, 2019, 76(4): 470-479. DOI: 10.1001/jamaneurol.2018.4377.
BRYOIS J, SKENE N G, HANSEN T F, et al. Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease[J]. Nat Genet, 2020, 52(5): 482-493. DOI: 10.1038/s41588-020-0610-9.
WU M Z, LUAN J X, ZHANG C C, et al. Quantitative susceptibility mapping of substantia nigra in the diagnosis of Parkinson's disease: A Meta analysis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 6-11. DOI: 10.12015/issn.1674-8034.2023.02.002.
PRASUHN J, STRAUTZ R, LEMMER F, et al. Neuroimaging correlates of substantia nigra hyperechogenicity in Parkinson's disease[J]. J Parkinsons Dis, 2022, 12(4): 1191-1200. DOI: 10.3233/JPD-213000.
VITALI P, PAN M I, PALESI F, et al. Substantia nigra volumetry with 3-T MRI in de novo and advanced Parkinson disease[J]. Radiology, 2020, 296(2): 401-410. DOI: 10.1148/radiol.2020191235.
GUAN X J, XIE F, XU X J. The application value of quantitative susceptibility mapping in evaluating substantia nigra "swallow tail sign" in the diagnosis of Parkinson's disease[J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2018, 18(4): 247-251. DOI: 10.3969/j.issn.1672-6731.2018.04.004.
PRASUHN J, NEUMANN A, STRAUTZ R, et al. Clinical MR imaging in Parkinson's disease: How useful is the swallow tail sign?[J/OL]. Brain Behav, 2021, 11(7): e02202 [2021-04-10]. DOI: 10.1002/brb3.2202.
BINCZYK F, PRAZUCH W, BOZEK P, et al. Radiomics and artificial intelligence in lung cancer screening[J]. Transl Lung Cancer Res, 2021, 10(2): 1186-1199. DOI: 10.21037/tlcr-20-708.
LIU Y, PANG H Z, CHEN B Y, et al. Research progress of radiomics in Parkinson's disease[J]. International Journal of Medical Radiology, 2022, 45(3): 289-292. DOI: 10.19300/j.2022.Z19542.
CALNE D B, SNOW B J, LEE C. Criteria for diagnosing Parkinson's disease[J]. Ann Neurol, 1992, 32Suppl: S125-S127. DOI: 10.1002/ana.410320721.
GUPTA R, KUMAR G, KUMAR S, et al. The swallow tail sign of substantia nigra: A case-control study to establish its role in diagnosis of Parkinson disease on 3T MRI[J]. J Neurosci Rural Pract, 2022, 13(2): 181-185. DOI: 10.1055/s-0041-1740578.
NOREL X, SUGIMOTO Y, OZEN G, et al. International union of basic and clinical pharmacology. CIX. Differences and similarities between human and rodent prostaglandin E2 receptors (EP1-4) and prostacyclin receptor (IP): specific roles in pathophysiologic conditions[J]. Pharmacol Rev, 2020, 72(4): 910-968. DOI: 10.1124/pr.120.019331.
SCHAFFNER A, LI X, GOMEZ-LLORENTE Y, et al. Vitamin B12modulates Parkinson's disease LRRK2 kinase activity through allosteric regulation and confers neuroprotection[J]. Cell Res, 2019, 29(4): 313-329. DOI: 10.1038/s41422-019-0153-8.
CHENG Z, ZHANG J, HE N, et al. Radiomic features of the nigrosome-1 region of the substantia nigra: using quantitative susceptibility mapping to assist the diagnosis of idiopathic Parkinson's disease[J/OL]. Front Aging Neurosci, 2019, 11: 167 [2021-04-10]. DOI: 10.3389/fnagi.2019.00167.
CHAU M T, TODD G, WILCOX R, et al. Diagnostic accuracy of the appearance of Nigrosome-1 on magnetic resonance imaging in Parkinson's disease: A systematic review and meta-analysis[J]. Parkinsonism Relat Disord, 2020, 78: 12-20. DOI: 10.1016/j.parkreldis.2020.07.002.
CHEN Q Q, CHEN Y T, JIANG Z, et al. Nigrosome-1 on susceptibility weighted imaging and its clinical relevance in Parkinson's disease[J]. Chin J Neurol, 2019, 52(8): 620-624. DOI: 10.3760/cma.j.issn.1006-7876.2019.08.004.
LIU X, WANG N, CHEN C, et al. Swallow tail sign on susceptibility map-weighted imaging (SMWI) for disease diagnosing and severity evaluating in parkinsonism[J]. Acta Radiol, 2021, 62(2): 234-242. DOI: 10.1177/0284185120920793.
KIM D S, TUNG G A, AKBAR U, et al. The evaluation of the swallow tail sign in patients with parkinsonism and gait disorders[J/OL]. J Neurol Sci, 2021, 428: 117581 [2021-04-10]. DOI: 10.1016/j.jns.2021.117581.
WANG N, YANG H, LI C, et al. Using 'swallow-tail' sign and putaminal hypointensity as biomarkers to distinguish multiple system atrophy from idiopathic Parkinson's disease: A susceptibility-weighted imaging study[J]. Eur Radiol, 2017, 27(8): 3174-3180. DOI: 10.1007/s00330-017-4743-x.
SUN X T, ZHANG Z W, YU G, et al. Diagnostic value of "swallow tail" appearance in the substantia nigra using susceptibility weighted imaging in Parkinson's disease[J]. Journal of Chongqing Medical University, 2021, 46(7): 823-827. DOI: 10.13406/j.cnki.cyxb.002859.
BLAZEJEWSKA A I, SCHWARZ S T, PITIOT A, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI[J]. Neurology, 2013, 81(6): 534-540. DOI: 10.1212/WNL.0b013e31829e6fd2.
SCHWARZ S T, AFZAL M, MORGAN P S, et al. The 'swallow tail' appearance of the healthy nigrosome-a new accurate test of Parkinson's disease: a case-control and retrospective cross-sectional MRI study at 3T[J/OL]. PLoS One, 2014, 9(4): e93814 [2023-04-10]. DOI: 10.1371/journal.pone.0093814.
COSOTTINI M, FROSINI D, PESARESI I, et al. Comparison of 3T and 7T susceptibility-weighted angiography of the substantia nigra in diagnosing Parkinson disease[J]. AJNR Am J Neuroradiol, 2015, 36(3): 461-466. DOI: 10.3174/ajnr.A4158.
SALMANPOUR M R, SHAMSAEI M, SABERI A, et al. Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning[J/OL]. Comput Biol Med, 2021, 129: 104142 [2023-04-10]. DOI: 10.1016/j.compbiomed.2020.104142.
LI J, LIU X, WANG X, et al. Diffusion tensor imaging radiomics for diagnosis of Parkinson's disease[J/OL]. Brain Sci, 2022, 12(7): 851 [2023-04-10]. DOI: 10.3390/brainsci12070851.
SHU Z Y, CUI S J, WU X, et al. Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter[J]. Magn Reson Med, 2021, 85(3): 1611-1624. DOI: 10.1002/mrm.28522.
MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. J Nucl Med, 2020, 61(4): 488-495. DOI: 10.2967/jnumed.118.222893.
CHEN K A, BERGINSKI M E, DESAI C S, et al. Differential performance of machine learning models in prediction of procedure-specific outcomes[J]. J Gastrointest Surg, 2022, 26(8): 1732-1742. DOI: 10.1007/s11605-022-05332-x.
KURLANDER J E, WALJEE A K, MENEES S B, et al. Regression and random forest machine learning have limited performance in predicting bowel preparation in veteran population[J]. Dig Dis Sci, 2022, 67(7): 2827-2841. DOI: 10.1007/s10620-021-07113-z.

PREV Application of synthetic MRI combined with VBM brain partition in the diagnosis of early Parkinson,s disease
NEXT Study on the synergistic effect of functional MRI on brain functional activity areas during limb linkage training in patients with Parkinson,s disease

Tel & Fax: +8610-67113815    E-mail: