Share this content in WeChat
The progress of magnetic resonance imaging in predicting biomarkers of ovarian cancer
ZHOU Hongyu  BAO Haihua  WEN Shengbao  WANG Yu  ZHAO Yalong  ZHANG Zixuan 

ZHOU H Y, BAO H H, WEN S B, et al. The progress of magnetic resonance imaging in predicting biomarkers of ovarian cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 171-175, 191. DOI:10.12015/issn.1674-8034.2023.09.031.

[Abstract] Ovarian cancer has an insidious onset, low early diagnosis rate and poor prognosis. The discovery of biomarkers is increasingly important for the treatment monitoring and guidance of targeted drug use in ovarian cancer, but most of them are invasive. MRI technology, such as diffusion weighted imaging (DWI), dynamic contrast-enhanced MRI (DCE-MRI), and molecular MRI, can be used to non-invasive prediction of biomarkers of ovarian cancer and targeted monitoring of therapeutic efficacy in order to provide new diagnostic and ideas for clinical treatment decisions and reduce invasive damage to patients. In addition, due to the rapid development of the pathogenesis and targeted drug research of ovarian cancer, targeted molecular imaging is becoming increasingly important for the clinical diagnosis and treatment of ovarian cancer. Therefore, it is necessary and urgent to develop and use targeted molecular imaging technology and targeted molecular probes in the future. We reviewed the research progress of different MRI techniques, including DWI, DCE-MRI, molecular MRI, imaging omics and artificial intelligence in predicting the biomarkers of ovarian cancer, providing new ideas for monitoring clinical treatment response and guiding the use of targeted drugs of ovarian cancer.
[Keywords] ovarian cancer;magnetic resonance imaging;targeted molecular magnetic resonance imaging;diffusion weighted imaging;dynamic contrast-enhanced magnetic resonance imaging;biomarker;noninvasive prediction

ZHOU Hongyu1   BAO Haihua2   WEN Shengbao2*   WANG Yu1   ZHAO Yalong1   ZHANG Zixuan1  

1 Clinical Medicine Department of Qinghai University, Xining 810000, China

2 Imaging Center of Qinghai University Affiliated Hospital, Xining 810000, China

Corresponding author: Wen SB, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Provincial Clinical Key Specialty Construction Project in Qinghai Province [No. Qing Cai She Zi (2020) 1301]; The ICON Research Fund Project of the China Red Cross Foundation's 'Yingrui Northwest Public Welfare Project' (No. XM_HR_ICON_2020_10).
Received  2023-04-20
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.09.031
ZHOU H Y, BAO H H, WEN S B, et al. The progress of magnetic resonance imaging in predicting biomarkers of ovarian cancer[J]. Chin J Magn Reson Imaging, 2023, 14(9): 171-175, 191. DOI:10.12015/issn.1674-8034.2023.09.031.

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
ARMSTRONG D K, ALVAREZ R D, BACKES F J, et al. NCCN guidelines® insights: ovarian cancer, version 3.2022[J]. J Natl Compr Canc Netw, 2022, 20(9): 972-980. DOI: 10.6004/jnccn.2022.0047.
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J, 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
LOKSHIN A E. The quest for ovarian cancer screening biomarkers[J/OL]. Int J Gynecol Cancer, 2012, 22: S35-S40 [2022-09-18]. DOI: 10.1097/igc.0b013e318251ccaa.
XIAO Y N, BI M Y, GUO H Y, et al. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis[J/OL]. EBioMedicine, 2022, 79: 104001 [2023-02-15]. DOI: 10.1016/j.ebiom.2022.104001.
JIANG X Y, LI H, ZHAO P, et al. Early detection of treatment-induced mitotic arrest using temporal diffusion magnetic resonance spectroscopy[J]. Neoplasia, 2016, 18(6): 387-397. DOI: 10.1016/j.neo.2016.04.006.
ZHANG G F, YAO W G, SUN T T, et al. Magnetic resonance imaging in categorization of ovarian epithelial cancer and survival analysis with focus on apparent diffusion coefficient value: correlation with Ki-67 expression and serum cancer antigen-125 level[J/OL]. J Ovarian Res, 2019, 12(1): 59 [2022-08-20]. DOI: 10.1186/s13048-019-0534-0.
LIU X F, ZHANG G F, JIN J, et al. Magnetic resonance imaging in categorization of ovarian epithelial cancer and survival analysis with focus on apparent diffusion coefficient value: correlation with CA-125 level and Ki-67 expression[J]. Fudan Univ J Med Sci, 2020, 47(4): 567-573. DOI: 10.3969/j.issn.1672-8467.2020.04.016.
WANG F, WANG Y X, ZHOU Y, et al. Apparent diffusion coefficient histogram analysis for assessing tumor staging and detection of lymph node metastasis in epithelial ovarian cancer: correlation with p53 and ki-67 expression[J]. Mol Imaging Biol, 2019, 21(4): 731-739. DOI: 10.1007/s11307-018-1295-7.
WANG N, XIAO F Y, SHAO H, et al. Clinical efficacy of Yiqi Yangyin Decoction combined with docetaxel on advanced ovarian cancer and the effect on the levels of serum markers VEGF, HE4, and CA125[J/OL]. J Healthc Eng, 2022, 2022: 8401202 [2023-01-29]. DOI: 10.1155/2022/8401202.
DERLATKA P, GRABOWSKA-DERLATKA L, HALABURDA-ROLA M, et al. The value of magnetic resonance diffusion-weighted imaging and dynamic contrast enhancement in the diagnosis and prognosis of treatment response in patients with epithelial serous ovarian cancer[J/OL]. Cancers, 2022, 14(10): 2464 [2023-01-27]. DOI: 10.3390/cancers14102464.
CUI Y H, ZHU S C, LI H X, et al. Diagnostic value of IVIM for benign and malignant identification of epithelial ovarian tumors and its correlation with ki67 expression[J]. Chin J Magn Reson Imag, 2020, 11(1): 45-49. DOI: 10.12015/issn.1674-8034.2020.01.010.
SUN C C, LIU Z D, LI S J, et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation[J]. Oncotarget, 2015, 6(28): 25533-25574. DOI: 10.18632/oncotarget.4575.
ABDULLAH N, TAMIMI Y, DOBRETSOV S, et al. Malformin-A1 (MA1) sensitizes chemoresistant ovarian cancer cells to cisplatin-induced apoptosis[J/OL]. Molecules, 2021, 26(12): 3624 [2022-11-14]. DOI: 10.3390/molecules26123624.
YUAN S J, QIAO T K, QIANG J W. Diffusion-weighted imaging and diffusion kurtosis imaging for early evaluation of the response to docetaxel in rat epithelial ovarian cancer[J/OL]. J Transl Med, 2018, 16(1): 340 [2022-09-17]. DOI: 10.1186/s12967-018-1714-1.
WANG X, LI S J, LIN X H, et al. Evaluation of tracer kinetic parameters in cervical cancer using dynamic contrast-enhanced MRI as biomarkers in terms of biological relevance, diagnostic performance and inter-center variability[J/OL]. Front Oncol, 2022, 12: 958219 [2022-09-16]. DOI: 10.3389/fonc.2022.958219.
ARLEDGE C A, SANKEPALLE D M, CROWE W N, et al. Deep learning quantification of vascular pharmacokinetic parameters in mouse brain tumor models[J/OL]. Front Biosci, 2022, 27(3): 99 [2023-03-25]. DOI: 10.31083/j.fbl2703099.
AMINI FARSANI Z, SCHMID V J. Maximum entropy technique and regularization functional for determining the pharmacokinetic parameters in DCE-MRI[J]. J Digit Imaging, 2022, 35(5): 1176-1188. DOI: 10.1007/s10278-022-00646-3.
LYU Y Y, ZHANG Y L, WANG Y H, et al. HIF-1α regulated WTAP overexpression promoting the Warburg effect of ovarian cancer by m6A-dependent manner[J/OL]. J Immunol Res, 2022, 2022: 6130806 [2023-03-19]. DOI: 10.1155/2022/6130806.
LINDGREN A, ANTTILA M, RAUTIAINEN S, et al. Dynamic contrast-enhanced perfusion parameters in ovarian cancer: good accuracy in identifying high HIF-1α expression[J/OL]. PLoS One, 2019, 14(8): e0221340 [2022-09-17]. DOI: 10.1371/journal.pone.0221340.
YUAN S J, QIAO T K, QIANG J W, et al. The value of DCE-MRI in assessing histopathological and molecular biological features in induced rat epithelial ovarian carcinomas[J]. J Ovarian Res, 2017, 10(1): 65 [2022-09-26]. DOI: 10.1186/s13048-017-0362-z.
YUAN S J, QIAO T K, QIANG J W, et al. Dynamic contrast enhanced-magnetic resonance imaging for the early evaluation of the response to docetaxel in rats with epithelial ovarian cancer[J]. Oncol Rep, 2019, 41(6): 3335-3346. DOI: 10.3892/or.2019.7124.
NOMANI A, LI G, YOUSEFI S, et al. Gadolinium-labeled affibody-XTEN recombinant vector for detection of HER2+ lesions of ovarian cancer lung metastasis using quantitative MRI[J]. J Control Release, 2021, 337: 132-143. DOI: 10.1016/j.jconrel.2021.07.022.
HEYERDAHL H, RØE K, BREVIK E M, et al. Modifications in dynamic contrast-enhanced magnetic resonance imaging parameters after α-particle-emitting 227Th-trastuzumab therapy of HER2-expressing ovarian cancer xenografts[J]. Int J Radiat Oncol Biol Phys, 2013, 87(1): 153-159. DOI: 10.1016/j.ijrobp.2013.04.052.
GE X D, LI M L, WEN X L, et al. Optimal concentration of superparamagnetic iron oxide-short hairpin RNA dual functional molecular probe transfected into ovarian cancer cells in vitro[J]. J Peking Univ Heath Sci, 2015, 47(5): 754-760. DOI: 10.3969/j.issn.1671-167X.2015.05.005.
GRANATA A, NICOLETTI R, TINAGLIA V, et al. Choline kinase-alpha by regulating cell aggressiveness and drug sensitivity is a potential druggable target for ovarian cancer[J]. Br J Cancer, 2014, 110(2): 330-340. DOI: 10.1038/bjc.2013.729.
PARIS L, PODO F, SPADARO F, et al. Phosphatidylcholine-specific phospholipase C inhibition reduces HER2-overexpression, cell proliferation and in vivo tumor growth in a highly tumorigenic ovarian cancer model[J/OL]. Oncotarget, 2017, 8(33): 55022-55038 [2022-10-15]. DOI: 10.18632/oncotarget.18992.
PODO F, PARIS L, CECCHETTI S, et al. Activation of phosphatidylcholine-specific phospholipase C in breast and ovarian cancer: impact on MRS-detected choline metabolic profile and perspectives for targeted therapy[J/OL]. Front Oncol, 2016, 6: 171 [2022-08-11]. DOI: 10.3389/fonc.2016.00171.
HANKER L C, EL-BALAT A, DROSOS Z, et al. Sphingosine-kinase-1 expression is associated with improved overall survival in high-grade serous ovarian cancer[J]. J Cancer Res Clin Oncol, 2021, 147(5): 1421-1430. DOI: 10.1007/s00432-021-03558-x.
BERNACCHIONI C, GHINI V, CENCETTI F, et al. NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells[J]. Mol Oncol, 2017, 11(5): 517-533. DOI: 10.1002/1878-0261.12048.
ORNELAS A, MCCULLOUGH C R, LU Z, et al. Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models[J/OL]. BMC Cancer, 2016, 16(1): 824 [2022-09-12]. DOI: 10.1186/s12885-016-2850-8.
CURTARELLO M, TOGNON M, VENTUROLI C, et al. Rewiring of lipid metabolism and storage in ovarian cancer cells after anti-VEGF therapy[J/OL]. Cells, 2019, 8(12): 1601 [2023-02-15]. DOI: 10.3390/cells8121601.
JAROSZEWICZ M J, ALTENHOF A R, SCHURKO R W, et al. Sensitivity enhancement by progressive saturation of the proton reservoir: a solid-state NMR analogue of chemical exchange saturation transfer[J]. J Am Chem Soc, 2021, 143(47): 19778-19784. DOI: 10.1021/jacs.1c08277.
HARIS M, YADAV S K, RIZWAN A, et al. Molecular magnetic resonance imaging in cancer[J/OL]. J Transl Med, 2015, 13: 313 [2022-10-25]. DOI: 10.1186/s12967-015-0659-x.
HATTRUP C L, GENDLER S J. Structure and function of the cell surface (tethered) mucins[J]. Annu Rev Physiol, 2008, 70: 431-457. DOI: 10.1146/annurev.physiol.70.113006.100659.
SONG X L, AIRAN R D, ARIFIN D R, et al. Label-free in vivo molecular imaging of underglycosylated mucin-1 expression in tumour cells[J/OL]. Nat Commun, 2015, 6: 6719 [2022-09-16]. DOI: 10.1038/ncomms7719.
VANDSBURGER M H, RADOUL M, ADDADI Y, et al. Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors[J]. Radiology, 2013, 268(3): 790-801. DOI: 10.1148/radiol.13122053.
LI D F, MA X H, ZHAO X M. Application of MR target molecular imaging in early diagnosis of pancreatic cancer[J]. Int J Med Radiol, 2020, 43(1): 63-67, 82. DOI: 10.19300/j.2020.Z17272.
SATPATHY M, WANG L Y, ZIELINSKI R J, et al. Targeted drug delivery and image-guided therapy of heterogeneous ovarian cancer using HER2-targeted theranostic nanoparticles[J]. Theranostics, 2019, 9(3): 778-795. DOI: 10.7150/thno.29964.
GIORDANO G, FERIOLI E, TAFUNI A. The role of mesothelin expression in serous ovarian carcinoma: impacts on diagnosis, prognosis, and therapeutic targets[J/OL]. Cancers, 2022, 14(9): 2283 [2023-02-17]. DOI: 10.3390/cancers14092283.
PRANTNER A M, YIN C, KAMAT K, et al. Molecular imaging of mesothelin-expressing ovarian cancer with a human and mouse cross-reactive nanobody[J]. Mol Pharm, 2018, 15(4): 1403-1411. DOI: 10.1021/acs.molpharmaceut.7b00789.
ALKHARUSI A, ALMUSLAHI A, ALBALUSHI N, et al. Connections between prolactin and ovarian cancer[J/OL]. PLoS One, 2021, 16(8): e0255701 [2022-09-13]. DOI: 10.1371/journal.pone.0255701.
SUNDARAM K M, ZHANG Y L, MITRA A K, et al. Prolactin receptor-mediated internalization of imaging agents detects epithelial ovarian cancer with enhanced sensitivity and specificity[J]. Cancer Res, 2017, 77(7): 1684-1696. DOI: 10.1158/0008-5472.CAN-16-1454.
GULLO R L, DAIMIEL I, MORRIS E A, et al. Combining molecular and imaging metrics in cancer: radiogenomics[J/OL]. Insights Imaging, 2020, 11(1): 1 [2022-08-11]. DOI: 10.1186/s13244-019-0795-6.
PINKER K, SHITANO F, SALA E, et al. Background, current role, and potential applications of radiogenomics[J]. J Magn Reson Imaging, 2018, 47(3): 604-620. DOI: 10.1002/jmri.25870.
TOMASZEWSKI M R, GILLIES R J. The biological meaning of radiomic features[J]. Radiology, 2021, 298(3): 505-516. DOI: 10.1148/radiol.2021202553.
NOUGARET S, TARDIEU M, VARGAS H A, et al. Ovarian cancer: an update on imaging in the era of radiomics[J]. Diagn Interv Imaging, 2019, 100(10): 647-655. DOI: 10.1016/j.diii.2018.11.007.
SALA E, KATAOKA M Y, PRIEST A N, et al. Advanced ovarian cancer: multiparametric MR imaging demonstrates response-and metastasis-specific effects[J]. Radiology, 2012, 263(1): 149-159. DOI: 10.1148/radiol.11110175.
WEIGELT B, VARGAS H A, SELENICA P, et al. Radiogenomics analysis of intratumor heterogeneity in a patient with high-grade serous ovarian cancer[J/OL]. JCO Precis Oncol, 2019, 3: PO.18.00410 [2022-09-13]. DOI: 10.1200/PO.18.00410.
NOUGARET S, MCCAGUE C, TIBERMACINE H, et al. Radiomics and radiogenomics in ovarian cancer: a literature review[J]. Abdom Radiol, 2021, 46(6): 2308-2322. DOI: 10.1007/s00261-020-02820-z.
MARTIN-GONZALEZ P, CRISPIN-ORTUZAR M, RUNDO L, et al. Integrative radiogenomics for virtual biopsy and treatment monitoring in ovarian cancer[J]. Insights Imaging, 2020, 11(1): 94 [2022-08-12]. DOI: 10.1186/s13244-020-00895-2.
SHRESTHA P, POUDYAL B, YADOLLAHI S, et al. A systematic review on the use of artificial intelligence in gynecologic imaging-Background, state of the art, and future directions[J]. Gynecol Oncol, 2022, 166(3): 596-605. DOI: 10.1016/j.ygyno.2022.07.024.
ZHAO H W, HAYAT H, MA X H, et al. Molecular imaging and deep learning analysis of uMUC1 expression in response to chemotherapy in an orthotopic model of ovarian cancer[J/OL]. Sci Rep, 2020, 10(1): 14942 [2022-09-12]. DOI: 10.1038/s41598-020-71890-2.

PREV Advances and applications of artificial intelligence in liver transplantation
NEXT Application progress of MRI based artificial intelligence in rectal cancer

Tel & Fax: +8610-67113815    E-mail: