Share this content in WeChat
Clinical Article
Application of three-dimensional pseudo-continuous arterial spin labeling combined with automatic segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy
YAN Mengnan  LI Jian  WANG Yiting  BAI Yucai  LI Jinqin  CHEN Bing 

YAN M N, LI J, WANG Y T, et al. Application of three-dimensional pseudo-continuous arterial spin labeling combined with automatic segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2023, 14(9): 26-32. DOI:10.12015/issn.1674-8034.2023.09.005.

[Abstract] Objective To study the application value of three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) combined with automatic hippocampal segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy (MTLE-HS).Materials and Methods A retrospective analysis was made of 40 cases of patients with unilateral MTLE-HS diagnosed with hippocampal sclerosis (HS) by pathology or MRI from January 2021 to December 2022, and 30 healthy volunteers matched with sex and age were included as the control group. All patients were scanned with axial T1 weighted three-dimensional magnetization intensity preparation gradient echo (3D-T1WI-MPRAGE) sequence and 3D-pCASL sequence on 3.0 T MRI. We used FreeSurfer software to segment the hippocampal subregions of 3D-T1WI images. By fusing the segmented hippocampal subregions with perfusion quantitative maps, we registered and measured the subarea cerebral blood flow (CBF). Compare the differences in CBF values in the hippocampus subregion between the left and right sides of the control group, and the affected and contralateral sides of the MTLE-HS group through paired t-tests. Independent samples t-test was used to compare the variability of CBF values in hippocampal subregions between the control group and the affected side of the MTLE-HS group, and between the control group and the contralateral side of the MTLE-HS group. The diagnostic efficacy of CBF value in each subregion in detecting MTLE-HS was evaluated by using the receiver operating characteristic (ROC) curve and the area under the curve (AUC).Results There was no significant difference in the CBF values of the left and right hippocampal subregions CA1, CA2-3, CA4, granular cell layer of dentate gyrus (GC-DG) in the control group (P>0.05). In the MTLE-HS group, there was no statistical difference in CBF values between the affected and contralateral CA1 (t=1.075, P=0.289), but there were significant differences in other subregions (all P<0.001). The CBF values of the affected and contralateral sides of MTLE-HS group were significantly different from those of the control group (P<0.001). ROC curve analysis results showed that the AUC of CBF values in hippocampal CA1, CA2-3, CA4 and GC-DG subregions were 0.746, 0.831, 0.837 and 0.830.Conclusions For patients with focal medial temporal lobe epilepsy, the measurement of blood perfusion in the hippocampal subregion is of certain significance to accurately locate the epileptogenic zone and its affected area before surgery, and provide imaging basis for understanding the blood perfusion changes in the MTLE-HS subregion before surgery.
[Keywords] medial temporal lobe epilepsy;hippocampal sclerosis;magnetic resonance imaging;arterial spin labeling;hippocampus subregion;automatic segmentation

YAN Mengnan1   LI Jian2   WANG Yiting1   BAI Yucai1   LI Jinqin1   CHEN Bing2*  

1 Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China

2 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750003, China

Corresponding author: Chen B, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Key R & D Program of Ningxia Hui Autonomous Region (No. 2020BEG03026); Natural Science Foundation of Ningxia (No. 2023AAC03611).
Received  2023-03-21
Accepted  2023-08-04
DOI: 10.12015/issn.1674-8034.2023.09.005
YAN M N, LI J, WANG Y T, et al. Application of three-dimensional pseudo-continuous arterial spin labeling combined with automatic segmentation technology in hippocampal sclerotic medial temporal lobe epilepsy[J]. Chin J Magn Reson Imaging, 2023, 14(9): 26-32. DOI:10.12015/issn.1674-8034.2023.09.005.

YAO Y, WANG F, ZHAO B. The normal anatomy of the hippocampus, developmental variations and common pathological changes of MRI manifestations[J]. J Med Imaging, 2021, 31(8): 1426-1929.
VOS S B, WINSTON G P, GOODKIN O, et al. Hippocampal profiling: Localized magnetic resonance imaging volumetry and T2 relaxometry for hippocampal sclerosis[J]. Epilepsia, 2020, 61(2): 297-309. DOI: 10.1111/epi.16416.
BLUMCKE I, SPREAFICO R, HAAKER G, et al. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery[J]. N Engl J Med, 2017, 377(17): 1648-1656. DOI: 10.1056/NEJMoa1703784.
YOGANATHAN K, MALEK N, TORZILLO E, et al. Neurological update: structural and functional imaging in epilepsy surgery[J]. J Neurol, 2023, 270(5): 2798-2808. DOI: 10.1007/s00415-023-11619-z.
LINDNER T, BOLAR D S, ACHTEN E, et al. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging[J]. Magn Reson Med, 2023, 89(5): 2024-2047. DOI: 10.1002/mrm.29572.
YANG Y G, CHEN F, WU X F, et al. Feasibility study of 3.0T magnetic resonance imaging with rapid arterial spin labeling in brain[J]. Chin J Magn Resonimaging, 2023, 14(1): 116-123. DOI: 10.12015/issn.1674-8034.2023.01.021.
WANG Y H, AN Y, FAN X T, et al. Comparison between simultaneously acquired arterial spin labeling and (18)F-FDG PET in mesial temporal lobe epilepsy assisted by a PET/MR system and SEEG[J]. Neuroimage Clin, 2018, 19: 824-830. DOI: 10.1016/j.nicl.2018.06.008.
SONE D, MAIKUSA N, SATO N, et al. Similar and Differing Distributions Between (18)F-FDG-PET and Arterial Spin Labeling Imaging in Temporal Lobe Epilepsy[J/OL]. Front Neurol, 2019, 10: 318 [2023-03-20]. DOI: 10.3389/fneur.2019.00318
LI J, BAI Y C, WU L H, et al. Synthetic relaxometry combined with MUSE DWI and 3D-pCASL improves detection of hippocampal sclerosis[J/OL]. Eur J Radiol, 2022, 157: 110571 [2023-03-20]. DOI: 10.1016/J.EJRAD.2022.110571.
KUBOTA B Y, COAN A C, YASUDA C L, et al. T2 hyperintense signal in patients with temporal lobe epilepsy with MRI signs of hippocampal sclerosis and in patients with temporal lobe epilepsy with normal MRI[J]. Epilepsy Behav, 2015, 46: 103-108. DOI: 10.1016/j.yebeh.2015.04.001.
IGLESIAS J E, AUGUSTINACK J C, NGUYEN K, et al. A computational atlas of the hippocampal formation using ex vivo , ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI[J]. NeuroImage, 2015, 115: 117-137. DOI: 10.1016/j.neuroimage.2015.04.042
MENZLER K, HAMER H, MROSS P, et al. Validation of automatic MRI hippocampal subfield segmentation by histopathological evaluation in patients with temporal lobe epilepsy[J]. Seizure, 2021, 87: 94-102. DOI: 10.1016/j.seizure.2021.03.007
Wu J J, Shahid S S, Lin Q X, et al. Multimodal magnetic resonance imaging reveals distinct sensitivity of hippocampal subfields in asymptomatic stage of Alzheimer's disease[J/OL]. Front Aging Neurosci, 2022, 14: 901140 [2023-03-20]. DOI: 10.3389/fnagi.2022.901140.
PARK Y, CHOI Y, KIM S, et al. Radiomics features of hippocampal regions in magnetic resonance imaging can differentiate medial temporal lobe epilepsy patients from healthy controls[J/OL]. Sci Rep, 2020, 10(1): 19567 [2023-03-20]. DOI: 10.1038/s41598-020-76283-z.
SHAH P, BASSETT D, WISSE L, et al. Structural and functional asymmetry of medial temporal subregions in unilateral temporal lobe epilepsy: A 7T MRI study[J].Hum Brain Mapp, 2019, 40(8): 2390-2398. DOI: 10.1002/hbm.24530.
DUVERNOY H M, CATTIN F, RISOLD P Y. The human hippocampus: functional anatomy, vascularization and serial sections with MRI[M]. Springer, 2005. DOI: 10.1007/978-3-642-33603-4.
Hasimoglu O, Barut O, Kapar M O, et al. Relation Between ILAE Hippocampal Sclerosis Classification and Clinical Findings in Temporal LobeEpilepsy[J]. Turk Neurosurg, 2021, 31(3): 404-411. DOI: 10.5137/1019-5149.JTN.32026-20.1.
BLÜMCKE I, THOM M, ARONICA E, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods[J]. Epilepsia, 2013, 54(7): 1315-1329. DOI: 10.1111/epi.12220.
AKHIL M, AISHWARYA R, LAL V, et al. Comparison and Evaluation of Segmentation Techniques for Brain MRI using Gold Standard[J]. Indian J Sci and Technol, 2016, 9(46): 1-5. DOI: 10.17485/ijst/2016/v9i46/106495.
SÄMANN P, IGLESIAS J, GUTMAN B, et al. FreeSurfer-based segmentationof hippocampal subfields: A review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts[J]. Hum Brain Mapp, 2022, 43(1): 207-233. DOI: 10.1002/hbm.25326.
WANG Y, QIAN T Y, SU Z Z, et al. Comparison between QBrain and FreeSurfer software for automatic measurement of hippocampal volume[J]. Chin J Med Imaging Technol, 2021, 37(2): 174-178. DOI: 10.13929/j.issn.1003-3289.2021.02.004.
XU Y Y, QIAN X H, DENG L, et al. Consistency of Freesurfer and VBM measurements of hippocampal volume[J]. Chin J Med Imaging, 2017, 25(9): 646-650.
GRIMM O, POHLACK S, CACCIAGLIA R, et al. Amygdalar and hippocampal volume: A comparison between manual segmentation, Freesurfer and VBM[J]. J Neurosci Methods, 2015, 253: 254-261. DOI: 10.1016/j.jneumeth.2015.05.024.
ZHANG X F, SHI L, ZHU M W, et al. Diagnosis of hippocampal sclerosisin temporal lobe epilepsy based on MRI automatic quantification of hippocampal volume[J]. Chinese Journal of Interventional Imaging and Therapy, 2022, 19(1): 40-43. DOI: 10.13929/j.issn.1672-8475.2022.01.009.
HU J, SHEN B X, LI Y J, et al. Quantitative analysis of temporal lobe epilepsy complicated with hippocampal sclerosis by automated MR Measurement[J]. Chin J Interv Imaging Ther, 2022, 31(3): 205-210. DOI: 10.3969/j.issn.1005-8001.2022.03.008.
GRANADOS SÁNCHEZ A M, OREJUELA ZAPATA J F. Hippocampal sclerosis: Volumetric evaluation of the substructures of the hippocampus by magnetic resonance imaging[J]. Radiologia (Engl Ed), 2018, 60(5): 404-412. DOI: 10.1016/j.rx.2018.03.007.
VAN STAALDUINEN E K, ZEINEH M M. Medial Temporal Lobe Anatomy[J]. Neuroimaging Clin N Am, 2022, 32(3): 475-489. DOI: 10.1016/j.nic.2022.04.012.
ZEINEH M M, PALOMERO-GALLAGHER N, AXER M, et al. Direct Visualization and Mapping of the Spatial Course of Fiber Tracts at Microscopic Resolution in the Human Hippocampus[J]. Cereb Cortex, 2017, 27(3): 1779-1794. DOI: 10.1093/cercor/bhw010.
ROMERO-GUERRERO C, GUEVARA M A, HERNANDEZ-GONZALEZ M, et al. Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats[J/OL]. Epilepsy Behav, 2022, 137(Pt A): 108922 [2023-03-20]. DOI: 10.1016/j.yebeh.2022.108922.
HAO K J, WANG Q, LI Y, et al. Application of dynamic observation of cerebral blood perfusion imaging in the localization and diagnosis of epileptic foci at different stages of epilepsy[J]. Chin J Med Imaging, 2021, 29(2): 126-130. DOI: 10.3969/j.issn.1005-5185.2021.02.007.
NAGESH C, KUMAR S, MENON R, et al. The Imaging of Localization Related Symptomatic Epilepsies:The Value of Arterial Spin Labelling Based Magnetic Resonance Perfusion[J]. Korean J Radiol, 2018, 19(5): 965-977. DOI: 10.3348/kjr.2018.19.5.965.
ALGAHTANY M, ABDRABOU A, ELHADDAD A, et al. Advances in Brain Imaging Techniques for Patients With Intractable Epilepsy[J/OL]. Front Neurosci, 2021, 15: 699123 [2023-03-20]. DOI: 10.3389/fnins.2021.699123.
HE M Y, ZHAO R, LIU P F. Study on hippocampal perfusion in patients with temporal lobe epilepsy by magnetic resonance arterial spin labeling (ASL)[J]. Journal of Medical Research, 2017, 46(3): 82-86. DOI: 10.11969/j.issn.1673-548X.2017.03.021.
BAI Y C, LI J, MA Y X, et al. Application of synthtic magnetic resonance imaging and 3D-pCASL in the diagnosis of hippocampal sclrosis inpatients withmedial temporal lobe epilepsy[J]. Radiol Practice, 2022, 37(8): 960-965. DOI: 10.13609/j.cnki.1000-0313.2022.08.007.
ZHANG Y, DOU W, ZUO Z, et al. Brain volume and perfusion asymmetry in temporal lobe epilepsy with and without hippocampal sclerosis[J]. Neurol Res, 2021, 43(4): 299-306. DOI: 10.1080/01616412.2020.1853988.

PREV Changes in spontaneous brain activity in patients with postherpetic neuralgia: An ALE Meta-analysis based on rs-fMRI data
NEXT Changes of cerebrospinal fluid capacity in patients with lung cancer with or without chemotherapy and its clinical significance

Tel & Fax: +8610-67113815    E-mail: