Share this content in WeChat
Clinical Article
Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression
MA Yue  HE Jiakai  GUO Chunlei  SUN Jifei  LU Xinyu  LUO Yi  GAO Shanshan  CHEN Qingyan  ZHANG Zhangjin  RONG Peijing  FANG Jiliang  LIU Yong 

MA Y, HE J K, GUO C L, et al. Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression[J]. Chin J Magn Reson Imaging, 2023, 14(9): 1-6, 18. DOI:10.12015/issn.1674-8034.2023.09.001.

[Abstract] Objective To explore the correlation between the brain functional amplitude of low-frequency fluctuation (ALFF) and serum inflammatory factors in mild to moderate depression (MMD).Materials and Methods A total of 48 MMD patients and 51 healthy controls were included. All participants underwent functional MRI (fMRI) resting-state brain functional scans, and the levels of serum tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 2 (IL-2), and high-sensitivity C-reactive protein (HsCRP) were measured. The 17-item Hamilton Depression Rating Scale (HAMD-17) and 14-item Hamilton Anxiety Rating Scale (HAMA-14) were used to assess the participants' clinical symptoms. The DPABI software was used for preprocessing and statistical analysis of fMRI data to obtain the ALFF values of different brain regions between the two groups. Spearman rank correlation analysis was conducted to explore the relationships between ALFF values, clinical scales, and inflammatory factor levels.Results The MMD group had significantly higher scores on HAMD-17 and HAMA-14 compared to the healthy control group (P<0.05). The levels of IL-2, IL-6, TNF-α and HsCRP were elevated in the MMD group. Compared to the healthy control group, the MMD group showed increased ALFF values in the left temporal subregion and decreased values in the right temporal pole, left triangular part of the inferior frontal gyrus, and right dorsolateral prefrontal cortex. The correlation analysis revealed a positive correlation between the left temporal subregion and HAMD-17, HAMA-14, and HsCRP (r=0.591, P<0.001; r=0.549, P<0.001; r=0.479, P<0.001), a negative correlation between the right dorsolateral prefrontal cortex and TNF-α (r=-0.285, P=0.004), and a positive correlation between HsCRP and HAMD-17, HAMA-14 (r=0.723, P<0.001; r=0.667, P<0.001).Conclusions MMD patients exhibit abnormal immune-inflammatory factors, and there are ALFF differences in specific brain regions, mainly involving the limbic and default mode networks. The left temporal subregion and right dorsolateral prefrontal cortex are abnormal brain regions associated with peripheral inflammatory factors, suggesting the involvement of more complex neuroimmune pathological mechanisms in MMD.
[Keywords] mild to moderate depression;resting-state functional magnetic resonance imaging;magnetic resonance imaging;amplitude of low-frequency fluctuation;serum inflammatory cytokines

MA Yue1   HE Jiakai2   GUO Chunlei1   SUN Jifei1   LU Xinyu3   LUO Yi1   GAO Shanshan1   CHEN Qingyan1   ZHANG Zhangjin4   RONG Peijing2   FANG Jiliang1*   LIU Yong3*  

1 Department of Radiology, Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100053, China

2 Institute of Acupuncture and Moxibustion, China Academy of Traditional Chinese Medicine, Beijing 100700, China

3 Department of Radiology, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou 646099, China

4 School of Chinese Medicine, the University of Hong Kong, Hong Kong 999077, China

Corresponding author: Fang JL, E-mail: Liu Y, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82174282, 81774433); Science and Technology Innovation Project of China Academy of Traditional Chinese Medicine (No. CI2021A03301).
Received  2023-01-04
Accepted  2023-08-04
DOI: 10.12015/issn.1674-8034.2023.09.001
MA Y, HE J K, GUO C L, et al. Correlation between low-frequency amplitude and serum inflammatory factors in resting-state functional magnetic resonance imaging in mild to moderate depression[J]. Chin J Magn Reson Imaging, 2023, 14(9): 1-6, 18. DOI:10.12015/issn.1674-8034.2023.09.001.

LIU P, TU H, ZHANG A, et al. Brain functional alterations in MDD patients with somatic symptoms: A resting-state fMRI study[J]. J Affect Disord, 2021, 295: 788-796. DOI: 10.1016/j.jad.2021.08.143.
WOLFERS T, BUITELAAR J K, BECKMANN C F, et al. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics[J]. Neurosci Biobehav Rev, 2015, 57: 328-349. DOI: 10.1016/j.neubiorev.2015.08.001.
GAO D, XIANG Q, LU G, et al. Evaluation and analysis of anxiety and depression symptoms for college students during COVID-19 pandemic[J]. BMC Psychol, 2022, 10(1): 227. DOI: 10.1186/s40359-022-00934-1.
HAMILTON M. The assessment of anxiety states by rating[J]. Br J Med Psychol, 1959, 32(1): 50-55. DOI: 10.1111/j.2044-8341.1959.tb00467.x.
TANAKA M, VÉCSEI L. Editorial of Special Issue "Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry"[J]. Biomedicines, 2021, 9(5): 517. DOI: 10.3390/biomedicines9050517.
SPEKKER E, TANAKA M, SZABÓ Á, et al. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research[J]. Biomedicines, 2021, 10(1): 76. DOI: 10.3390/biomedicines10010076.
KIM I B, LEE J H, PARK S C. The Relationship between Stress, Inflammation, and Depression[J]. Biomedicines, 2022, 10(8): 1929. DOI: 10.3390/biomedicines10081929.
CHEN C. Recent advances in the study of the comorbidity of depressive and anxiety disorders[J]. Adv Clin Exp Med, 2022, 31(4): 355-358. DOI: 10.17219/acem/147441.
GŁADKA A, ZATOŃSKI T, RYMASZEWSKA J. Association between the long-term exposure to air pollution and depression[J]. Adv Clin Exp Med, 2022, 31(10): 1139-1152. DOI: 10.17219/acem/149988.
HESTAD K, ALEXANDER J, ROOTWELT H, et al. The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases[J]. Biomolecules, 2022, 12(7): 998. DOI: 10.3390/biom12070998.
SMITH R S. The macrophage theory of depression[J]. Med Hypotheses, 1991, 35(4): 298-306. DOI: 10.1016/0306-9877(91)90272-z.
XU Y J, SHENG H, NI X. Advances in the study of the pathogenesis of depression[J]. Journal of Anhui Medical University, 2012, 47(3): 323-326. DOI: 10.19405/j.cnki.issn1000-1492.2012.03.025.
TAN Y, ZHOU L, HUANG J, et al. Vitamin B12, Folate, Homocysteine, Inflammatory Mediators (Interleukin-6, Tumor Necrosis Factor-α and C-Reactive Protein) Levels in Adolescents with Anxiety or Depressive Symptoms[J]. Neuropsychiatr Dis Treat, 2023, 19: 785-800. DOI: 10.2147/NDT.S399378.
ELGELLAIE A, THOMAS S J, KAELLE J, et al. Pro-inflammatory cytokines IL-1α, IL-6 and TNF-α in major depressive disorder: Sex-specific associations with psychological symptoms[J]. Eur J Neurosci, 2023, 57(11): 1913-1928. DOI: 10.1111/ejn.15992.
SUNESON K, GRUDET C, VENTORP F, et al. An inflamed subtype of difficult-to-treat depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 125: 110763. DOI: 10.1016/j.pnpbp.2023.110763.
JONES B D M, MAHMOOD U, HODSOLL J, et al. Associations between peripheral inflammation and clinical phenotypes of bipolar depression in a lower-middle income country[J]. CNS Spectr, 2023: 1-9. DOI: 10.1017/S1092852923002316.
MILLER A H, MALETIC V, RAISON C L. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression[J]. Biol Psychiatry, 2009, 65(9): 732-741. DOI: 10.1016/j.biopsych.2008.11.029.
MILLER A H, RAISON C L. The role of inflammation in depression: from evolutionary imperative to modern treatment target[J]. Nat Rev Immunol, 2016, 16(1): 22-34. DOI: 10.1038/nri.2015.5.
STUART M J, BAUNE B T. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies[J]. Neurosci Biobehav Rev, 2014, 42: 93-115. DOI: 10.1016/j.neubiorev.2014.02.001.
GUO Y, JIANG X, JIA L, et al. Altered gray matter volumes and plasma IL-6 level in major depressive disorder patients with suicidal ideation[J]. Neuroimage Clin, 2023, 38: 103403. DOI: 10.1016/j.nicl.2023.103403.
TROUBAT R, BARONE P, LEMAN S, et al. Neuroinflammation and depression: A review[J]. Eur J Neurosci, 2021, 53(1): 151-171. DOI: 10.1111/ejn.14720.
MILANESCHI Y, SIMMONS W K, VAN ROSSUM E F C, et al. Depression and obesity: evidence of shared biological mechanisms[J]. Mol Psychiatry, 2019, 24(1): 18-33. DOI: 10.1038/s41380-018-0017-5.
BURROWS K, STEWART J L, KUPLICKI R, et al. Elevated peripheral inflammation is associated with attenuated striatal reward anticipation in major depressive disorder[J]. Brain Behav Immun, 2021, 93: 214-225. DOI: 10.1016/j.bbi.2021.01.016.
CONEJERO I, JAUSSENT I, CAZALS A, et al. Association between baseline pro-inflammatory cytokines and brain activation during social exclusion in patients with vulnerability to suicide and depressive disorder[J]. Psychoneuroendocrinology, 2019, 99: 236-242. DOI: 10.1016/j.psyneuen.2018.09.041.
WHITE T G, POWELL K, SHAH K A, et al. Trigeminal Nerve Control of Cerebral Blood Flow: A Brief Review[J]. Front Neurosci, 2021, 15: 649910. DOI: 10.3389/fnins.2021.649910.
LIN Z Q, WANG T L, WANG G Q. Resting-state magnetic resonance imaging study of remitted depression based on low-frequency fluctuation and independent component analysis[J]. Journal of Clinical Psychology, 2022, 32(5): 357-361.
XIAO Q, ZHANG D L. Differences and similarities between ICD-11 and DSM-5 diagnostic criteria for depressive disorders[J]. Sichuan Mental Health, 2019, 32(6): 543-547.
LU C, CHEN J, LIU H, et al. Analysis of efficacy evaluation scales for acupuncture treatment of anxiety disorders[J]. Chin Acup Moxib, 2015, 35(9): 943-946. DOI: 10.13703/j.0255-2930.2015.09.026.
ZOU Q H, ZHU C Z, YANG Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
MACHADO M O, ORIOLO G, BORTOLATO B, et al. Biological mechanisms of depression following treatment with interferon for chronic hepatitis C: A critical systematic review[J]. J Affect Disord, 2017, 209: 235-245. DOI: 10.1016/j.jad.2016.11.039.
MITTERAUER B. Imbalance of glial-neuronal interaction in synapses: a possible mechanism of the pathophysiology of bipolar disorder[J]. Neuroscientist, 2004, 10(3): 199-206. DOI: 10.1177/107385403262248.
OSIMO E F, PILLINGER T, RODRIGUEZ I M, et al. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls[J]. Brain Behav Immun, 2020, 87: 901-909. DOI: 10.1016/j.bbi.2020.02.010.
HENJE BLOM E, LEKANDER M, INGVAR M, et al. Pro-inflammatory cytokines are elevated in adolescent females with emotional disorders not treated with SSRIs[J]. J Affect Disord, 2012, 136(3): 716-723. DOI: 10.1016/j.jad.2011.10.002.
MING X. Study on the relationship between serum high-sensitivity C-reactive protein and diagnosis of depression and antidepressant treatment[D]. Chongqing: Chongqing Medical University, 2022. DOI: 10.27674/d.cnki.gcyku.2022.000884.
BORSINI A, DI BENEDETTO M G, GIACOBBE J, et al. Pro- and anti-inflammatory properties of interleukin (IL6) in vitro: relevance for major depression and for human hippocampal neurogenesis[J]. Int J Neuropsychopharmacol, 2020, 23(11): 738-750. DOI: 10.1093/ijnp/pyaa055.
MALYNN S, CAMPOS-TORRES A, MOYNAGH P, et al. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes[J]. Neurochem Res, 2013, 38(4): 694-704. DOI: 10.1007/s11064-012-0967-y.
LIU G X, YANG L Q, XU X D, et al. Psychological assessment and measurement of interleukin and cortisol in injured victims of traffic accidents[J]. Chinese Mental Health Journal, 2002, 16(6): 382-383, 379. DOI: 10.3321/j.issn:1000-6729.2002.06.005.
MAES M, LEONARD B E, MYINT A M, et al. The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2011, 35(3): 702-721. DOI: 10.1016/j.pnpbp.2010.12.017.
GALLAGHER H L, FRITH C D. Functional imaging of 'theory of mind'[J]. Trends Cogn Sci, 2003, 7(2): 77-83. DOI: 10.1016/s1364-6613(02)00025-6.
BITSCH F, BERGER P, NAGELS A, et al. The role of the right temporo-parietal junction in social decision-making[J]. Hum Brain Mapp, 2018, 39(7): 3072-3085. DOI: 10.1002/hbm.24061.
WAGNER G, LI M, SACCHET M D, et al. Functional network alterations differently associated with suicidal ideas and acts in depressed patients: an indirect support to the transition model[J]. Transl Psychiatry, 2021, 11(1): 100. DOI: 10.1038/s41398-021-01232-x.
LI Y, WU S, YIN Y, et al. Study on resting-state low-frequency amplitude ratio and its correlation with depressive symptoms in patients with first-episode, untreated severe depression[J]. J Clin Radiol, 2022, 41(1): 12-17. DOI: 10.13437/j.cnki.jcr.2022.01.003.
YANG C, ZHANG A, JIA A, et al. Identify abnormalities in resting-state brain function between first-episode, drug-naive major depressive disorder and remitted individuals: a 3-year retrospective study[J]. Neuroreport, 2018, 29(11): 907-916. DOI: 10.1097/WNR.0000000000001054.
LIAO C J, FENG Z Z. Brain mechanisms of emotion processing and cognitive control in depression[J]. Adv Psychol Sci, 2010, 18(2): 282-287.
ZHANG T, HE K, BAI T, et al. Altered neural activity in the reward-related circuit and executive control network associated with amelioration of anhedonia in major depressive disorder by electroconvulsive therapy[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 109: 110193. DOI: 10.1016/j.pnpbp.2020.110193.
CUI Y Y, LIANG H B, ZHU Q, et al. Resting-state functional magnetic resonance imaging study of somatic symptom disorder based on low-frequency amplitude fraction and degree centrality[J]. Chin J Magn Reson Imaging, 2021, 12(7): 51-54. DOI: 10.12015/issn.1674-8034.2021.07.010.
ZHANG X, TANG Y, MALETIC-SAVATIC M, et al. Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study[J]. J Affect Disord, 2016, 201: 153-161. DOI: 10.1016/j.jad.2016.05.014.

PREV Application of superparamagnetic iron oxide nanoparticle in the diagnosis and treatment of tumor
NEXT A study of regional homogeneity altered of brain function and cognitive dysfunction in patients with ischemic stroke

Tel & Fax: +8610-67113815    E-mail: