Share this content in WeChat
Clinical Article
Cerebral imaging characteristics of pruritus caused by eczema based on fALFF and FC analyses
ZHANG Yuying  KIM Taeeun  XU Huihui  SHEN Qiang  WANG Hui  TAN Wenli  GONG Zhigang  ZHAN Songhua  WEI Xiangyu 

ZHANG Y Y, KIM T E, XU H H, et al. Cerebral imaging characteristics of pruritus caused by eczema based on fALFF and FC analyses[J]. Chin J Magn Reson Imaging, 2023, 14(8): 45-50. DOI:10.12015/issn.1674-8034.2023.08.007.

[Abstract] Objective To analyze the cerebral characteristics of patients with pruritus by resting-state functional magnetic resonance imaging (rs-fMRI).Materials and Methods Forty-two patients with eczema were recruited in the observation group, and 44 healthy subjects were included in the control group. The visual analogue scale (VAS), 12-Item Pruritus Severity Scale (12-PSS), Pittsburgh Sleep Quality Index and Self-rating Anxiety Scale were recorded in the observation group. The different values of fraction amplitude of low frequency fluctuation (fALFF) were compared between the observation and control group through rs-fMRI program. Subsequently, functional connectivity (FC) was analyzed using the brain regions with significant differences between groups as seed points.Results There were no significant differences in average age, sex ratio, years of education between the two groups (P>0.05). Compared with the control group, the fALFF values of the left precentral gyrus, left postcentral gyrus, left supplementary motor area, and left anterior cingulate cortex in the observation group were increased. The FC values between the left precentral gyrus and bilateral inferior temporal gyrus, bilateral fusiform gyrus, bilateral hippocampus, bilateral middle temporal gyrus, bilateral inferior occipital gyrus, and bilateral lingual gyrus were decreased in the observation group. The FC values between left supplementary motor area and bilateral inferior temporal gyrus, bilateral superior temporal gyrus, right hippocampus and right insula were decreased in the observation group. The 12-PSS score was positively correlated with fALFF value of left precentral gyrus (r=0.59, P<0.01) and left postcentral gyrus (r=0.52, P<0.01), and was positively correlated with VAS score (r=0.33, P<0.05) in the observation group.Conclusions The spontaneous activity of the left somatosensory and motor area are abnormally increased in patients with pruritus, and there is a correlation between given cerebral regions and clinical scales, which provides potential neurobiological markers for the future study of pruritus. The synchronous decrease of FC between left somatosensory motor area and occipital or temporal lobe is another important brain network feature in patients with pruritus.
[Keywords] dermatosis;eczema;pruritus;central mechanism;fraction amplitude of low frequency fluctuation;functional connectivity;magnetic resonance imaging

ZHANG Yuying1   KIM Taeeun2   XU Huihui1   SHEN Qiang1   WANG Hui1   TAN Wenli1   GONG Zhigang1   ZHAN Songhua1   WEI Xiangyu2, 3*  

1 Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

2 Department of Acupuncture & Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

3 Institute of Acupuncture and Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Corresponding author: Wei XY, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82205267).
Received  2023-01-08
Accepted  2023-07-21
DOI: 10.12015/issn.1674-8034.2023.08.007
ZHANG Y Y, KIM T E, XU H H, et al. Cerebral imaging characteristics of pruritus caused by eczema based on fALFF and FC analyses[J]. Chin J Magn Reson Imaging, 2023, 14(8): 45-50. DOI:10.12015/issn.1674-8034.2023.08.007.

RATCHATASWAN T, BANZON T M, THYSSEN J P, et al. Biologics for treatment of atopic dermatitis: current status and future prospect[J]. J Allergy Clin Immunol Pract, 2021, 9(3): 1053-1065. DOI: 10.1016/j.jaip.2020.11.034.
WEISSHAAR E. Epidemiology of itch[J/OL]. Curr Probl Dermatol, 2016, 50: 5-10 [2023-01-07]. DOI: 10.1159/000446010.
ROH Y S, CHOI J, SUTARIA N, et al. Itch: Epidemiology, clinical presentation, and diagnostic workup[J]. J Am Acad Dermatol, 2022, 86(1): 1-14. DOI: 10.1016/j.jaad.2021.07.076.
BEUERS U, WOLTERS F, OUDE ELFERINK R P J. Mechanisms of pruritus in cholestasis: understanding and treating the itch[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(1): 26-36. DOI: 10.1038/s41575-022-00687-7.
GONZALEZ-CASTILLO J, KAM J W Y, HOY C W, et al. How to interpret resting-state fMRI: ask your participants[J]. J Neurosci, 2021, 41(6): 1130-1141. DOI: 10.1523/JNEUROSCI.1786-20.2020.
ZOU Q H, ZHU C Z, YANG Y H, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
NAJAFI P, SALEM D BEN, CARRÉ J L, et al. Functional and anatomical brain connectivity in psoriasis patients and healthy controls: a pilot brain imaging study after exposure to mentally induced itch[J]. J Eur Acad Dermatol Venereol, 2020, 34(11): 2557-2565. DOI: 10.1111/jdv.16441.
CHEDDAD EL AOUNI M, SALEM D BEN, MISERY L. Functional MRI of pruritus[J]. J Neuroradiol, 2020, 47(6): 400-401. DOI: 10.1016/j.neurad.2020.09.001.
NAJAFI P, DUFOR O, SALEM D BEN, et al. Itch processing in the brain[J]. J Eur Acad Dermatol Venereol, 2021, 35(5): 1058-1066. DOI: 10.1111/jdv.17029.
KLEYN C E, MCKIE S, ROSS A, et al. A temporal analysis of the central neural processing of itch[J]. Br J Dermatol, 2012, 166(5): 994-1001. DOI: 10.1111/j.1365-2133.2012.10849.x.
HAWRO T, LEHMANN S, DEURING E, et al. Comparison of pruritus and sensory qualities induced by capsaicin, histamine and cowhage[J]. J Eur Acad Dermatol Venereol, 2019, 33(9): 1755-1761. DOI: 10.1111/jdv.15743.
DESBORDES G, LI A, LOGGIA M L, et al. Evoked itch perception is associated with changes in functional brain connectivity[J/OL]. Neuroimage Clin, 2015, 7: 213-221 [2023-01-07]. DOI: 10.1016/j.nicl.2014.12.002.
WANG Y M, FANG J L, SONG P, et al. The dysfunction of the cerebellum and its cerebellum-reward-sensorimotor loops in chronic spontaneous urticaria[J]. Cerebellum, 2018, 17(5): 507-516. DOI: 10.1007/s12311-018-0933-6.
ZHAO B. China clinical dermatology[M]. Nanjing: Phoenix Science Press, 2009.
BUYSSE D J, REYNOLDS C F, MONK T H, et al. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research[J]. Psychiatry Res, 1989, 28(2): 193-213. DOI: 10.1016/0165-1781(89)90047-4.
ZUNG W W K. Factors influencing the self-rating depression scale[J/OL]. Arch Gen Psychiatry, 1967, 16(5): 543 [2023-01-07]. DOI: 10.1001/archpsyc.1967.01730230027003.
SHAFSHAK T S, ELNEMR R. The visual analogue scale versus numerical rating scale in measuring pain severity and predicting disability in low back pain[J]. J Clin Rheumatol, 2021, 27(7): 282-285. DOI: 10.1097/RHU.0000000000001320.
REICH A, BOŻEK A, JANISZEWSKA K, et al. 12-item pruritus severity scale: development and validation of new itch severity questionnaire[J/OL]. Biomed Res Int, 2017, 2017: 3896423 [2023-01-07]. DOI: 10.1155/2017/3896423.
HANIFIN J M, BAGHOOMIAN W, GRINICH E, et al. The eczema area and severity index-a practical guide[J]. Dermatitis, 2022, 33(3): 187-192. DOI: 10.1097/DER.0000000000000895.
SUTARIA N, ADAWI W, GOLDBERG R, et al. Itch: pathogenesis and treatment[J]. J Am Acad Dermatol, 2022, 86(1): 17-34. DOI: 10.1016/j.jaad.2021.07.078.
WOO S, KIM Y R, BAK M S, et al. Multiplexed representation of itch and pain and their interaction in the primary somatosensory cortex[J]. Exp Neurobiol, 2022, 31(5): 324-331. DOI: 10.5607/en22029.
CHEN X J, LIU Y H, XU N L, et al. Multiplexed representation of itch and mechanical and thermal sensation in the primary somatosensory cortex[J]. J Neurosci, 2021, 41(50): 10330-10340. DOI: 10.1523/JNEUROSCI.1445-21.2021.
THIBAUT A, OHRTMAN E A, MORALES-QUEZADA L, et al. Distinct behavioral response of primary motor cortex stimulation in itch and pain after burn injury[J/OL]. Neurosci Lett, 2019, 690: 89-94 [2023-01-07]. DOI: 10.1016/j.neulet.2018.10.013.
XU L, XU H W, WANG S H. Translation and validation of the 12-item pruritus severity scale[J]. J Nurs Sci, 2019, 34(16): 26-29. DOI: 10.3870/j.issn.1001-4152.2019.16.026.
MU D, DENG J, LIU K F, et al. A central neural circuit for itch sensation[J]. Science, 2017, 357(6352): 695-699. DOI: 10.1126/science.aaf4918.
NAJAFI P, CARRÉ J L, SALEM D BEN, et al. Central mechanisms of itch: a systematic literature review and meta-analysis[J]. J De Neuroradiol, 2020, 47(6): 450-457. DOI: 10.1016/j.neurad.2019.11.005.
KIM H J, PARK J B, LEE J H, et al. How stress triggers itch: a preliminary study of the mechanism of stress-induced pruritus using fMRI[J]. Int J Dermatol, 2016, 55(4): 434-442. DOI: 10.1111/ijd.12864.
BLISS T V, COLLINGRIDGE G L, KAANG B K, et al. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain[J]. Nat Rev Neurosci, 2016, 17(8): 485-496. DOI: 10.1038/nrn.2016.68.
KANTROWITZ J T, DONG Z C, MILAK M S, et al. Ventromedial prefrontal cortex/anterior cingulate cortex Glx, glutamate, and GABA levels in medication-free major depressive disorder[J/OL]. Transl Psychiatry, 2021, 11(1): 419 [2023-01-07]. DOI: 10.1038/s41398-021-01541-1.
ISHIUJI Y. Addiction and the itch-scratch cycle. What do they have in common?[J]. Exp Dermatol, 2019, 28(12): 1448-1454. DOI: 10.1111/exd.14029.
SETSU T, HAMADA Y, OIKAWA D, et al. Direct evidence that the brain reward system is involved in the control of scratching behaviors induced by acute and chronic itch[J/OL]. Biochem Biophys Res Commun, 2021, 534: 624-631 [2023-01-07]. DOI: 10.1016/j.bbrc.2020.11.030.
KIM D, LEE J Y, JEONG B C, et al. Overconnectivity of the right Heschl's and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder[J]. Autism Res, 2021, 14(11): 2314-2329. DOI: 10.1002/aur.2609.
BHAYA-GROSSMAN I, CHANG E F. Speech computations of the human superior temporal gyrus[J/OL]. Annu Rev Psychol, 2022, 73: 79-102 [2023-01-07]. DOI: 10.1146/annurev-psych-022321-035256.
DESAUNAY P, GUILLERY B, MOUSSAOUI E, et al. Brain correlates of declarative memory atypicalities in autism: a systematic review of functional neuroimaging findings[J/OL]. Mol Autism, 2023, 14(1): 2 [2023-01-07]. DOI: 10.1186/s13229-022-00525-2.
JACQUES C, JONAS J, MAILLARD L, et al. The inferior occipital gyrus is a major cortical source of the face-evoked N170: Evidence from simultaneous scalp and intracerebral human recordings[J]. Hum Brain Mapp, 2019, 40(5): 1403-1418. DOI: 10.1002/hbm.24455.
SELLAL F. Anatomical and neurophysiological basis of face recognition[J]. Rev Neurol, 2022, 178(7): 649-653. DOI: 10.1016/j.neurol.2021.11.002.
RUNIA N, YÜCEL D E, LOK A, et al. The neurobiology of treatment-resistant depression: a systematic review of neuroimaging studies[J/OL]. Neurosci Biobehav Rev, 2022, 132: 433-448 [2023-01-07]. DOI: 10.1016/j.neubiorev.2021.12.008.
LU J, ZHANG Z Z, YIN X X, et al. An entorhinal-visual cortical circuit regulates depression-like behaviors[J]. Mol Psychiatry, 2022, 27(9): 3807-3820. DOI: 10.1038/s41380-022-01540-8.
DATSI A, STEINHOFF M, AHMAD F, et al. Interleukin-31: the "itchy" cytokine in inflammation and therapy[J]. Allergy, 2021, 76(10): 2982-2997. DOI: 10.1111/all.14791.

PREV Clinical and imaging features and prognostic factors of acute ischemic stroke in patients with Trousseau,s syndrome
NEXT Comparative study on the application of Dixon and SPAIR in thyroid-associated ophthalmopathy

Tel & Fax: +8610-67113815    E-mail: