Share this content in WeChat
Progressions in clinical application of magnetic resonance imaging in myopathy
XU Ting  GUO Yingkun  XU Huayan  CAI Xiaotang 

Cite this article as: XU T, GUO Y K, XU H Y, et al. Progressions in clinical application of magnetic resonance imaging in myopathy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 192-196, 202. DOI:10.12015/issn.1674-8034.2023.07.035.

[Abstract] MRI has the advantages of high soft tissue resolution, non-invasive, great reproducibility, visualizing changes in muscle volume and tissue characteristics, which can be used as the main method for diagnosis and following-up of muscle disease progression. Several previous studies have shown that multimodal MRI can provide multiple imaging biomarkers for the diagnosis, dynamic evaluation of efficacy, prognosis and prediction of muscle diseases. Meanwhile, with the development of new magnetic resonance image technology, quantitative evaluation methods of tissue characteristics such as muscle fat replacement and edema have been gradually applied in clinical practice. According to the types of muscle weakness, muscle diseases can be divided into six types. Therefore, this paper mainly reviews the research progress of the application of MRI in the tissue characterization and differential diagnosis of different muscle diseases based on the characteristics of the six classification modes of muscle diseases, so as to provide image support for clinical diagnosis and treatment.
[Keywords] myopathy;muscular dystrophy;congenital myopathy;muscle weakness;magnetic resonance imaging

XU Ting1   GUO Yingkun1   XU Huayan1*   CAI Xiaotang2  

1 Department of Radiology, West China Second Hospital, Sichuan University, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defect of Ministry of Education, Chengdu 610041, China

2 Department of Pediatric Neurology, West China Second Hospital, Sichuan University, Chengdu 610041, China

Corresponding author: Xu HY, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81901712); Key Research and Development Projects of Sichuan Provincial Science and Technology Plan (No. 2021YFS0175).
Received  2022-06-27
Accepted  2023-06-28
DOI: 10.12015/issn.1674-8034.2023.07.035
Cite this article as: XU T, GUO Y K, XU H Y, et al. Progressions in clinical application of magnetic resonance imaging in myopathy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 192-196, 202. DOI:10.12015/issn.1674-8034.2023.07.035.

TEN DAM L, VAN DER KOOI A J, VERHAMME C, et al. Muscle imaging in inherited and acquired muscle diseases[J]. Eur J Neurol, 2016, 23(4): 688-703. DOI: 10.1111/ene.12984.
CAGNIE B, ELLIOTT J M, O'LEARY S, et al. Muscle functional MRI as an imaging tool to evaluate muscle activity[J]. J Orthop Sports Phys Ther, 2011, 41(11): 896-903. DOI: 10.2519/jospt.2011.3586.
TAWIL R N, VENANCE S. Neuromuscular disorders[M]. LU J H, ZHAO Chongbo, DOI: . Tianjin: Tianjin Science and Technology Translation and Publishing Co., Ltd, 2013: 8-10.
DAHLQVIST J R, WIDHOLM P, LEINHARD O D, et al. MRI in neuromuscular diseases: an emerging diagnostic tool and biomarker for prognosis and efficacy[J]. Ann Neurol, 2020, 88(4): 669-681. DOI: 10.1002/ana.25804.
WEBER M A, WOLF M, WATTJES M P. Imaging patterns of muscle atrophy[J]. Semin Musculoskelet Radiol, 2018, 22(3): 299-306. DOI: 10.1055/s-0038-1641574.
AIVAZOGLOU L U, GUIMARÃES J B, LINK T M, et al. MR imaging of inherited myopathies: a review and proposal of imaging algorithms[J]. Eur Radiol, 2021, 31(11): 8498-8512. DOI: 10.1007/s00330-021-07931-9.
COOLEY J R, HEBERT J J, DE ZOETE A, et al. Assessing lumbar paraspinal muscle cross-sectional area and fat composition with T1 versus T2-weighted magnetic resonance imaging: reliability and concurrent validity[J/OL]. PLoS One, 2021, 16(2): e0244633 [2022-02-19]. DOI: 10.1371/journal.pone.0244633.
ALIC L, GRIFFIN J F 4th, ERESEN A, et al. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: a systematic mapping review[J]. Muscle Nerve, 2021, 64(1): 8-22. DOI: 10.1002/mus.27133.
FORBES S C, ARORA H, WILLCOCKS R J, et al. Upper and lower extremities in Duchenne muscular dystrophy evaluated with quantitative MRI and proton MR spectroscopy in a multicenter cohort[J]. Radiology, 2020, 295(3): 616-625. DOI: 10.1148/radiol.2020192210.
KRŠŠÁK M, LINDEBOOM L, SCHRAUWEN-HINDERLING V, et al. Proton magnetic resonance spectroscopy in skeletal muscle: experts' consensus recommendations[J/OL]. NMR Biomed, 2021, 34(5): e4266 [2022-04-06]. DOI: 10.1002/nbm.4266.
YU S C, SU H Q, LU J C, et al. Combined T2 mapping and diffusion tensor imaging: a sensitive tool to assess myofascial trigger points in a rat model[J]. J Pain Res, 2021, 14: 1721-1731. DOI: 10.2147/JPR.S313966.
HOLLIS L, BARNHILL E, PERRINS M, et al. Finite element analysis to investigate variability of MR elastography in the human thigh[J]. Magn Reson Imaging, 2017, 43: 27-36. DOI: 10.1016/j.mri.2017.06.008.
GAST L V, VÖLKER S, UTZSCHNEIDER M, et al. Combined imaging of potassium and sodium in human skeletal muscle tissue at 7 T[J]. Magn Reson Med, 2021, 85(1): 239-253. DOI: 10.1002/mrm.28428.
MAZZOLI V, MOULIN K, KOGAN F, et al. Diffusion tensor imaging of skeletal muscle contraction using oscillating gradient spin echo[J/OL]. Front Neurol, 2021, 12: 608549 [2022-02-27]. DOI: 10.3389/fneur.2021.608549.
MENSCH A, KRAYA T, KOESTER F, et al. Whole-body muscle MRI of patients with MATR3-associated distal myopathy reveals a distinct pattern of muscular involvement and highlights the value of whole-body examination[J]. J Neurol, 2020, 267(8): 2408-2420. DOI: 10.1007/s00415-020-09862-9.
MARTY B, REYNGOUDT H, BOISSERIE J M, et al. Water-fat separation in MR fingerprinting for quantitative monitoring of the skeletal muscle in neuromuscular disorders[J]. Radiology, 2021, 300(3): 652-660. DOI: 10.1148/radiol.2021204028.
MALARTRE S, BACHASSON D, MERCY G, et al. MRI and muscle imaging for idiopathic inflammatory myopathies[J/OL]. Brain Pathol, 2021, 31(3): e12954 [2022-04-21]. DOI: 10.1111/bpa.12954.
NAGAWA K, SUZUKI M, YAMAMOTO Y, et al. Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies[J/OL]. Sci Rep, 2021, 11(1): 9821 [2022-04-01]. DOI: 10.1038/s41598-021-89311-3.
AI T, YU K, GAO L, et al. Diffusion tensor imaging in evaluation of thigh muscles in patients with polymyositis and dermatomyositis[J/OL]. Br J Radiol, 2014, 87(1043): 20140261 [2022-04-01]. DOI: 10.1259/bjr.20140261.
UKICHI T, YOSHIDA K, MATSUSHIMA S, et al. MRI of skeletal muscles in patients with idiopathic inflammatory myopathies: characteristic findings and diagnostic performance in dermatomyositis[J/OL]. RMD Open, 2019, 5(1): e000850 [2022-04-02]. DOI: 10.1136/rmdopen-2018-000850.
PILANIA K, JANKHARIA B. Role of MRI in idiopathic inflammatory myopathies: a review article[J]. Acta Radiol, 2022, 63(2): 200-213. DOI: 10.1177/0284185121990305.
SPALKIT S, SINHA A, PRAKASH M, et al. Dermatomyositis: Patterns of MRI findings in muscles, fascia and skin of pelvis and thigh[J/OL]. Eur J Radiol, 2021, 141: 109812 [2022-04-06]. DOI: 10.1016/j.ejrad.2021.109812.
ZHENG Y M, LIU L L, WANG L, et al. Magnetic resonance imaging changes of thigh muscles in myopathy with antibodies to signal recognition particle[J/OL]. Rheumatology (Oxford), 2015, 54(6): 1017-1024. DOI: 10.1093/rheumatology/keu422.
BUSHBY K M D, COLLINS J, HICKS D. Collagen type VI myopathies[M]//Advances in Experimental Medicine and Biology. Dordrecht: Springer Netherlands, 2013: 185-199. DOI: 10.1007/978-94-007-7893-1_12.
QI J, OLSEN N J, PRICE R R, et al. Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis[J]. J Magn Reson Imaging, 2008, 27(1): 212-217. DOI: 10.1002/jmri.21209.
SHEIKH A M, RUDOLF K, WITTING N, et al. Quantitative muscle MRI as outcome measure in patients with Becker muscular dystrophy-a 1-year follow-up study[J/OL]. Front Neurol, 2020, 11: 613489 [2022-04-08]. DOI: 10.3389/fneur.2020.613489.
WANG L H, SHAW D W W, FAINO A, et al. Longitudinal study of MRI and functional outcome measures in facioscapulohumeral muscular dystrophy[J/OL]. BMC Musculoskelet Disord, 2021, 22(1): 262 [2022-04-10]. DOI: 10.1186/s12891-021-04134-7.
FENG X L, LUO S S, LI J, et al. Fatty infiltration evaluation and selective pattern characterization of lower limbs in limb-girdle muscular dystrophy type 2A by muscle magnetic resonance imaging[J]. Muscle Nerve, 2018, 58(4): 536-541. DOI: 10.1002/mus.26169.
SHIOYA A, TAKUMA H, TAKAHASHI T, et al. Radiological findings in siblings with dysferlin mutation with diverse phenotype[J/OL]. J Neurol Sci, 2020, 409: 116579 [2022-04-22]. DOI: 10.1016/j.jns.2019.116579.
WANG D N, WANG Z Q, CHEN Y Q, et al. Limb-girdle muscular dystrophy type 2I: two Chinese families and a review in Asian patients[J]. Int J Neurosci, 2018, 128(3): 199-207. DOI: 10.1080/00207454.2017.1380640.
ROONEY W D, BERLOW Y A, TRIPLETT W T, et al. Modeling disease trajectory in Duchenne muscular dystrophy[J/OL]. Neurology, 2020, 94(15): e1622-e1633 [2022-04-27]. DOI: 10.1212/WNL.0000000000009244.
FORBES S C, WILLCOCKS R J, TRIPLETT W T, et al. Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study[J/OL]. PLoS One, 2014, 9(9): e106435 [2022-03-10]. DOI: 10.1371/journal.pone.0106435.
RAVENSCROFT G, BRYSON-RICHARDSON R J, NOWAK K J, et al. Recent advances in understanding congenital myopathies[J/OL]. F1000Res, 2018, 7: F1000FacultyRev-F1000Faculty1921 [2022-04-27]. DOI: 10.12688/f1000research.16422.1.
XU C X, ZHAO Y W, ZHANG W, et al. Thigh muscle magnetic resonance imaging study in congenital myopathy[J]. Chin J Neuroimmunol Neurol, 2015, 22(3): 177-181. DOI: 10.3969/j.issn.1006-2963.2015.03.006.
CARLIER R Y, QUIJANO-ROY S. Myoimaging in congenital myopathies[J]. Semin Pediatr Neurol, 2019, 29: 30-43. DOI: 10.1016/j.spen.2019.03.019.
CASSANDRINI D, TROVATO R, RUBEGNI A, et al. Congenital myopathies: clinical phenotypes and new diagnostic tools[J/OL]. Ital J Pediatr, 2017, 43(1): 101 [2022-04-27]. DOI: 10.1186/s13052-017-0419-z.
MILONE M, LIEWLUCK T. The unfolding spectrum of inherited distal myopathies[J]. Muscle Nerve, 2019, 59(3): 283-294. DOI: 10.1002/mus.26332.
FUJISE K, OKUBO M, ABE T, et al. Imaging-based evaluation of pathogenicity by novel DNM2 variants associated with centronuclear myopathy[J]. Hum Mutat, 2022, 43(2): 169-179. DOI: 10.1002/humu.24307.
FU J, ZHENG Y M, JIN S Q, et al. "target" and "sandwich" signs in thigh muscles have high diagnostic values for collagen VI-related myopathies[J]. Chin Med J (Engl), 2016, 129(15): 1811-1816. DOI: 10.4103/0366-6999.186638.
STRAMARE R, BELTRAME V, DAL BORGO R, et al. MRI in the assessment of muscular pathology: a comparison between limb-girdle muscular dystrophies, hyaline body myopathies and myotonic dystrophies[J]. Radiol Med, 2010, 115(4): 585-599. DOI: 10.1007/s11547-010-0531-2.
LU Y L, LUO Y B, YANG H. Research progress of myofibrillar myopathy[J]. Chin J Neurol, 2018, 51(2): 143-150. DOI: 10.3760/cma.j.issn.1006-7876.2018.02.014.
SONG J, FU J, MA M M, et al. Lower limb muscle magnetic resonance imaging in Chinese patients with myotonic dystrophy type 1[J]. Neurol Res, 2020, 42(2): 170-177. DOI: 10.1080/01616412.2020.1716494.
DAY J A, BAJIC N, GENTILI S, et al. Radiographic patterns of muscle involvement in the idiopathic inflammatory myopathies[J]. Muscle Nerve, 2019, 60(5): 549-557. DOI: 10.1002/mus.26660.
ANSARI B, SALORT-CAMPANA E, OGIER A, et al. Quantitative muscle MRI study of patients with sporadic inclusion body myositis[J]. Muscle Nerve, 2020, 61(4): 496-503. DOI: 10.1002/mus.26813.
KUBÍNOVÁ K, MANN H, VRÁNA J, et al. How imaging can assist with diagnosis and monitoring of disease in Myositis[J/OL]. Curr Rheumatol Rep, 2020, 22(10): 62 [2022-05-15]. DOI: 10.1007/s11926-020-00939-y.
HELLER S A, SHIH R, KALRA R, et al. Emery-dreifuss muscular dystrophy[J]. Muscle Nerve, 2020, 61(4): 436-448. DOI: 10.1002/mus.26782.
MADEJ-PILARCZYK A. Clinical aspects of Emery-Dreifuss muscular dystrophy[J]. Nucleus, 2018, 9(1): 268-274. DOI: 10.1080/19491034.2018.1462635.
PINTO M J, FROMES Y, ACKERMANN-BONAN I, et al. Muscle MRI as a diagnostic challenge in emery-dreifuss muscular dystrophy[J]. J Neuromuscul Dis, 2022, 9(5): 649-654. DOI: 10.3233/JND-220823.
LIN H T, LIU X, ZHANG W, et al. Muscle magnetic resonance imaging in patients with various clinical subtypes of LMNA-related muscular dystrophy[J]. Chin Med J (Engl), 2018, 131(12): 1472-1479. DOI: 10.4103/0366-6999.233957.
MERCURI E, COUNSELL S, ALLSOP J, et al. Selective muscle involvement on magnetic resonance imaging in autosomal dominant Emery-Dreifuss muscular dystrophy[J]. Neuropediatrics, 2002, 33(1): 10-14. DOI: 10.1055/s-2002-23593.
PAPADOPOULOS C, PAPADIMAS G K. The relevance of blepharoptosis in diagnostic suspicion of myopathies[J]. Neurol India, 2021, 69(1): 177-180. DOI: 10.4103/0028-3886.310067.
BRISSET M, BEN YAOU R, CARLIER R Y, et al. X-linked Emery-Dreifuss muscular dystrophy manifesting with adult onset axial weakness, camptocormia, and minimal joint contractures[J]. Neuromuscul Disord, 2019, 29(9): 678-683. DOI: 10.1016/j.nmd.2019.06.009.

PREV Clinical research progress of abbreviated breast MRI in breast cancer
NEXT Research progress and applications of fat quantification with magnetic resonance imaging

Tel & Fax: +8610-67113815    E-mail: