Share:
Share this content in WeChat
X
Reviews
Current status and progress in predicting the efficacy of neoadjuvant therapy for breast cancer based on MRI radiomics methods
SHANG Yiyan  TAN Hongna 

Cite this article as: SHANG Y Y, TAN H N. Current status and progress in predicting the efficacy of neoadjuvant therapy for breast cancer based on MRI radiomics methods[J]. Chin J Magn Reson Imaging, 2023, 14(7): 181-185, 191. DOI:10.12015/issn.1674-8034.2023.07.033.


[Abstract] Breast cancer is one of the most common malignant tumors in women. Neoadjuvant therapy (NAT) has been widely used in the preoperative treatment of locally advanced breast cancer. A number of studies have shown that Magnetic resonance imaging (MRI) techniques can predict the efficacy of neoadjuvant therapy for breast cancer. In recent years, radiomics has been paid more and more attention by scholars at home and abroad. Many researchers have studied and explored how to predict the efficacy of NAT in breast cancer based on MRI radiomics features. This article reviews the current status and progress in predicting the efficacy of NAT in breast cancer based on MRI radiomics methods, to help clinicians and radiologists to understand the application and progress of MRI radiomics methods in the efficacy evaluation of NAT in breast cancer.
[Keywords] breast cancer;neoadjuvant therapy;efficacy evaluation;magnetic resonance imaging;radiomics;dynamic contrast-enhanced magnetic resonance imaging;diffusion weighted imaging

SHANG Yiyan   TAN Hongna*  

Department of Medical Imaging, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou 450003, China

Corresponding author: Tan HN, E-mail: natan2000@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Henan Province (No. 202300410081); Medical Science and Technological Project of Henan Province (No. LHGJ20220055).
Received  2023-02-10
Accepted  2023-06-28
DOI: 10.12015/issn.1674-8034.2023.07.033
Cite this article as: SHANG Y Y, TAN H N. Current status and progress in predicting the efficacy of neoadjuvant therapy for breast cancer based on MRI radiomics methods[J]. Chin J Magn Reson Imaging, 2023, 14(7): 181-185, 191. DOI:10.12015/issn.1674-8034.2023.07.033.

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA A Cancer J Clinicians, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
Breast Cancer Committee of China Anti-cancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013
[3]
Chinese Expert Group on Neoadjuvant Therapy for Breast Cancer. Expert consensus on neoadjuvant therapy for breast cancer in China (2019 edition)[J]. China Oncol, 2019, 29(5): 390-400. DOI: 10.19401/j.cnki.1007-3639.2019.05.009
[4]
REIG B, HEACOCK L, LEWIN A, et al. Role of MRI to assess response to neoadjuvant therapy for breast cancer[J/OL]. J Magn Reson Imaging, 2020, 52(6) [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/32227407/. DOI: 10.1002/jmri.27145.
[5]
KIM Y, KIM S H, SONG B J, et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ultrasound in breast cancer[J]. Korean J Radiol, 2018, 19(4): 682-691. DOI: 10.3348/kjr.2018.19.4.682.
[6]
JAHANI N, COHEN E, HSIEH M K, et al. Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE-MRI registration[J/OL]. Sci Rep, 2019, 9(1): 12114 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/31431633/. DOI: 10.1038/s41598-019-48465-x.
[7]
PARTRIDGE S C, NISSAN N, RAHBAR H, et al. Diffusion-weighted breast MRI: clinical applications and emerging techniques[J]. J Magn Reson Imaging, 2017, 45(2): 337-355. DOI: 10.1002/jmri.25479.
[8]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[9]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[10]
LI W, LE N N, ONISHI N, et al. Diffusion-weighted MRI for predicting pathologic complete response in neoadjuvant immunotherapy[J]. Cancers (Basel), 2022, 14(18): 4436. DOI: 10.3390/cancers14184436.
[11]
Li W, NEWITT D C, WILMES L J, et al. Additive value of diffusion-weighted MRI in the I-SPY 2 TRIAL[J]. J Magn Reson Imaging, 2019, 50(6): 1742-1753. DOI: 10.1002/jmri.26770.
[12]
FARDANESH R, MARINO M A, AVENDANO D, et al. Proton MR spectroscopy in the breast: technical innovations and clinical applications[J]. J Magn Reson Imaging, 2019, 50(4): 1033-1046. DOI: 10.1002/jmri.26700.
[13]
DRISIS S, FLAMEN P, IGNATIADIS M, et al. Total choline quantification measured by 1H MR spectroscopy as early predictor of response after neoadjuvant treatment for locally advanced breast cancer: the impact of immunohistochemical status[J]. J Magn Reson Imaging, 2018, 48(4): 982-993. DOI: 10.1002/jmri.26042.
[14]
CHO N, IM S A, KANG K W, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single-voxel 1H-magnetic resonance spectroscopy and 18F-fluorodeoxyglucose positron emission tomography[J]. Eur Radiol, 2016, 26(7): 2279-2290. DOI: 10.1007/s00330-015-4014-7.
[15]
LEONG K M, LAU P, RAMADAN S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy[J]. J Med Imaging Radiat Oncol, 2015, 59(3): 268-277. DOI: 10.1111/1754-9485.12310.
[16]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[17]
KUMAR V, GU Y H, BASU S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
[18]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[19]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[20]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[21]
CHEN T, LI M J, GU Y F, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884. DOI: 10.1002/jmri.26243.
[22]
MASSAFRA R, BOVE S, LORUSSO V, et al. Radiomic feature reduction approach to predict breast cancer by contrast-enhanced spectral mammography images[J/OL]. Diagnostics (Basel), 2021, 11(4): 684 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/33920221/. DOI: 10.3390/diagnostics11040684.
[23]
VENKADESH K V, SETIO A A A, SCHREUDER A, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT[J]. Radiology, 2021, 300(2): 438-447. DOI: 10.1148/radiol.2021204433.
[24]
REN J L, TIAN J, YUAN Y, et al. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma[J/OL]. Eur J Radiol, 2018, 106: 1-6 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/30150029/. DOI: 10.1016/j.ejrad.2018.07.002.
[25]
ZHANG B, TIAN J, DONG D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2017, 23(15): 4259-4269. DOI: 10.1158/1078-0432.CCR-16-2910.
[26]
HORVAT N, VEERARAGHAVAN H, KHAN M, et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy[J]. Radiology, 2018, 287(3): 833-843. DOI: 10.1148/radiol.2018172300.
[27]
CAO K, ZHAO B, LI X T, et al. Texture analysis of dynamic contrast-enhanced MRI in evaluating pathologic complete response (pCR) of mass-like breast cancer after neoadjuvant therapy[J/OL]. J Oncol, 2019, 2019: 1-7 [2023-02-09]. https://www.hindawi.com/journals/jo/2019/4731532/. DOI: 10.1155/2019/4731532.
[28]
HU Y H, XIE C Y, YANG H, et al. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma[J/OL]. JAMA Netw Open, 2020, 3(9): e2015927 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/32910196/. DOI: 10.1001/jamanetworkopen.2020.15927.
[29]
WANG W, PENG Y, FENG X Y, et al. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer[J/OL]. JAMA Netw Open, 2021, 4(8): e2121143 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/34410397/. DOI: 10.1001/jamanetworkopen.2021.21143.
[30]
CHEN H M, ZHANG X, WANG X H, et al. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study[J]. Eur Radiol, 2021, 31(10): 7913-7924. DOI: 10.1007/s00330-021-07748-6.
[31]
MAO N, SHI Y H, LIAN C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol, 2022, 32(5): 3207-3219. DOI: 10.1007/s00330-021-08414-7.
[32]
ZHANG X, YANG Z H, CUI W J, et al. Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer[J]. Eur Radiol, 2021, 31(8): 5924-5939. DOI: 10.1007/s00330-020-07674-z.
[33]
WANG D W, HU Y Q, ZHAN C N, et al. A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2022, 12: 940655 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36338691/. DOI: 10.3389/fonc.2022.940655.
[34]
SONG D L, YANG F, ZHANG Y J, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 17 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/35379339/. DOI: 10.1186/s40644-022-00450-w.
[35]
SHIMADA Y, KUDO Y, MAEHARA S, et al. Artificial intelligence-based radiomics for the prediction of nodal metastasis in early-stage lung cancer[J/OL]. Sci Rep, 2023, 13(1): 1028 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36658301/. DOI: 10.1038/s41598-023-28242-7.
[36]
HUANG Y, JIANG X, XU H, et al. Preoperative prediction of mediastinal lymph node metastasis in non-small cell lung cancer based on 18F-FDG PET/CT radiomics[J]. Clin Radiol, 2023, 78(1): 8-17. DOI: 10.1016/j.crad.2022.08.140.
[37]
XUE X Q, YU W J, SHI X, et al. 18F-FDG PET/CT-based radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J/OL]. Front Oncol, 2022, 12: 911168 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36003788/. DOI: 10.3389/fonc.2022.911168.
[38]
MARINO M A, HELBICH T, BALTZER P, et al. Multiparametric MRI of the breast: a review[J]. J Magn Reson Imaging, 2018, 47(2): 301-315. DOI: 10.1002/jmri.25790.
[39]
CAIN E H, SAHA A, HAROWICZ M R, et al. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set[J]. Breast Cancer Res Treat, 2019, 173(2): 455-463. DOI: 10.1007/s10549-018-4990-9.
[40]
ZENG Q, KE M M, ZHONG L H, et al. Radiomics based on dynamic contrast-enhanced MRI to early predict pathologic complete response in breast cancer patients treated with neoadjuvant therapy[J/OL]. Acad Radiol, 2022 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36564256/. DOI: 10.1016/j.acra.2022.11.006.
[41]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[42]
BIAN T T, WU Z J, LIN Q, et al. Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer[J/OL]. Br J Radiol, 2020, 93(1115): 20200287 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/32822542/. DOI: 10.1259/bjr.20200287.
[43]
LI C C, LU N, HE Z F, et al. A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7685-7693. DOI: 10.1245/s10434-022-12034-w.
[44]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/28693537/. DOI: 10.1186/s13058-017-0862-1.
[45]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[46]
PUJARA A C, KIM E, AXELROD D, et al. PET/MRI in breast cancer[J]. J Magn Reson Imaging, 2019, 49(2): 328-342. DOI: 10.1002/jmri.26298.
[47]
UMUTLU L, KIRCHNER J, BRUCKMANN N M, et al. Multiparametric 18F-FDG PET/MRI-based radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J/OL]. Cancers (Basel), 2022, 14(7): 1727 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/35406499/. DOI: 10.3390/cancers14071727.
[48]
CHOI J H, KIM H A, KIM W, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning[J/OL]. Sci Rep, 2020, 10(1): 21149 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/33273490/. DOI: 10.1038/s41598-020-77875-5.
[49]
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[50]
BITENCOURT A G V, GIBBS P, ROSSI SACCARELLI C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J/OL]. EBioMedicine, 2020, 61: 103042 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/33039708/. DOI: 10.1016/j.ebiom.2020.103042.
[51]
HUSSAIN L, HUANG P, NGUYEN T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response[J/OL]. Biomed Eng Online, 2021, 20(1): 63 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/34183038/. DOI: 10.1186/s12938-021-00899-z.
[52]
TAHMASSEBI A, WENGERT G J, HELBICH T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019, 54(2): 110-117. DOI: 10.1097/RLI.0000000000000518.
[53]
QU Y H, ZHU H T, CAO K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method[J]. Thorac Cancer, 2020, 11(3): 651-658. DOI: 10.1111/1759-7714.13309.
[54]
ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI[J/OL]. Sci Rep, 2023, 13(1): 1171 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36670144/. DOI: 10.1038/s41598-023-27518-2.
[55]
WILKINSON M D, DUMONTIER M, JAN AALBERSBERG I, et al. Addendum: The FAIR Guiding Principles for scientific data management and stewardship[J/OL]. Sci Data, 2019, 6(1): 6 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/30890711/. DOI: 10.1038/s41597-019-0009-6.
[56]
BETTINELLI A, MARTURANO F, AVANZO M, et al. A novel benchmarking approach to assess the agreement among radiomic tools[J/OL]. Radiology, 2022, 303(2): E30 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/35468022/. DOI: 10.1148/radiol.229008.

PREV Research progress of radiomics based on MRI for prediction of axillary lymph node metastasis in breast cancer
NEXT Clinical research progress of abbreviated breast MRI in breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn