Share this content in WeChat
Application progress of MRI radiomics in breast cancer of neoadjuvant chemotherapy
ZHAO Qing  OUYANG Zubin 

Cite this article as: ZHAO Q, OUYANG Z B. Application progress of MRI radiomics in breast cancer of neoadjuvant chemotherapy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 171-175. DOI:10.12015/issn.1674-8034.2023.07.031.

[Abstract] Breast cancer is the most common malignant tumor in women, with an increasing incidence and mortality rate. Neoadjuvant chemotherapy (NAC) has become an important component of comprehensive treatment for breast cancer, with different types of breast cancer exhibiting varying responses and prognoses after NAC. Magnetic resonance imaging (MRI) radiomics can extract a large number of quantitative features from MRI images and analyze the data using high-throughput computing, providing comprehensive tumor information for predicting and evaluating the efficacy of NAC in breast cancer. In recent years, numerous studies have explored the clinical applications of radiomics in breast cancer NAC, including predicting breast cancer molecular subtypes, NAC response, prognostic factors, and risk of recurrence. The lack of standardized definitions and limited reproducibility have hindered the clinical application of radiomics, but MRI radiomics still holds great potential for development. This article aims to review the progress, challenges, and prospects of applying MRI radiomics in the assessment of NAC efficacy and prognosis in breast cancer, providing new insights for precision treatment decision-making.
[Keywords] breast cancer;neoadjuvant chemotherapy;magnetic resonance imaging;radiomics;molecular subtyping;predicting treatment efficacy;prognosis

ZHAO Qing   OUYANG Zubin*  

Department of Radiology, the First Hospital of Chongqing Medical University, Chongqing 400016, China

Corresponding author: Ouyang ZB, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Program Project (No. 2020YFA0714002); Medical Research Project of Chongqing Municipal Health and Family Planning Commission (No. 2015MSXM011).
Received  2023-02-22
Accepted  2023-06-26
DOI: 10.12015/issn.1674-8034.2023.07.031
Cite this article as: ZHAO Q, OUYANG Z B. Application progress of MRI radiomics in breast cancer of neoadjuvant chemotherapy[J]. Chin J Magn Reson Imaging, 2023, 14(7): 171-175. DOI:10.12015/issn.1674-8034.2023.07.031.

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
CAO W, CHEN H D, YU Y W, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020[J]. Chin Med J (Engl), 2021, 134(7): 783-791. DOI: 10.1097/CM9.0000000000001474.
Expert group of Chinese expert consensus on neoadjuvant therapy for breast cancer (Annual edition), SHAO Z M. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-88. DOI: CNKI:SUN:ZGAZ.0.2019-05-012.
Chinese anti-Cancer Association guidelines and specifications for the diagnosis and treatment of breast cancer (2021 edition)[J]. China Oncol, 2021, 31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.
CRIVELLI P, LEDDA R E, PARASCANDOLO N, et al. A new challenge for radiologists: radiomics in breast cancer[J/OL]. Biomed Res Int, 2018, 2018: 1-10 [2023-02-21]. DOI: 10.1155/2018/6120703.
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
ACHARYA UR, HAGIWARA Y, SUDARSHAN V K, et al. Towards precision medicine: from quantitative imaging to radiomics[J]. J Zhejiang Univ Sci B, 2018, 19(1): 6-24. DOI: 10.1631/jzus.B1700260.
FERRO M, DE COBELLI O, MUSI G, et al. Radiomics in prostate cancer: an up-to-date review[J/OL]. Ther Adv Urol, 2022, 14: 175628722211090 [2023-02-21]. DOI: 10.1177/17562872221109020.
TAGLIAFICO A S, PIANA M, SCHENONE D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J/OL]. Breast, 2020, 49: 74-80 [2023-02-21]. DOI: 10.1016/j.breast.2019.10.018.
SINGH G, MANJILA S, SAKLA N, et al. Radiomics and radiogenomics in gliomas: a contemporary update[J]. Br J Cancer, 2021, 125(5): 641-657. DOI: 10.1038/s41416-021-01387-w.
BRUIXOLA G, REMACHA E, JIMÉNEZ-PASTOR A, et al. Radiomics and radiogenomics in head and neck squamous cell carcinoma: potential contribution to patient management and challenges[J/OL]. Cancer Treat Rev, 2021, 99: 102263 [2023-02-21]. DOI: 10.1016/j.ctrv.2021.102263.
BERTELLI E, MERCATELLI L, MARZI C, et al. Machine and deep learning prediction of prostate cancer aggressiveness using multiparametric MRI[J/OL]. Front Oncol, 2022, 11: 802964 [2023-02-21]. DOI: 10.3389/fonc.2021.802964.
WALLS G M, OSMAN S O S, BROWN K H, et al. Radiomics for predicting lung cancer outcomes following radiotherapy: a systematic review[J/OL]. Clin Oncol, 2022, 34(3): e107-e122 [2023-02-21]. DOI: 10.1016/j.clon.2021.10.006.
MCANENA P, MOLONEY B M, BROWNE R, et al. A radiomic model to classify response to neoadjuvant chemotherapy in breast cancer[J]. BMC Med Imaging, 2022, 22(1): 225 [2023-02-21]. DOI: 10.1186/s12880-022-00956-6.
FUMAGALLI C, BARBERIS M. Breast cancer heterogeneity[J/OL]. Diagnostics (Basel), 2021, 11(9): 1555 [2023-02-21]. DOI: 10.3390/diagnostics11091555.
BURSTEIN H J, CURIGLIANO G, THÜRLIMANN B, et al. Customizing local and systemic therapies for women with early breast cancer: the St. Gallen International Consensus Guidelines for treatment of early breast cancer 2021[J]. Ann Oncol, 2021, 32(10): 1216-1235. DOI: 10.1016/j.annonc.2021.06.023.
HARBECK N, PENAULT-LLORCA F, CORTES J, et al. Breast cancer[J/OL]. Nat Rev Dis Primers, 2019, 5: 66 [2023-02-21]. DOI: 10.1038/s41572-019-0111-2.
AVANZO M, STANCANELLO J, NAQA I EL. Beyond imaging: the promise of radiomics[J/OL]. Phys Med, 2017, 38: 122-139 [2023-02-21]. DOI: 10.1016/j.ejmp.2017.05.071.
ÖZTÜRK V S, POLAT Y D, SOYDER A, et al. The relationship between MRI findings and molecular subtypes in women with breast cancer[J]. Curr Probl Diagn Radiol, 2020, 49(6): 417-421. DOI: 10.1067/j.cpradiol.2019.07.003.
SADIA, CHOUDHERY, MD, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Acad Radiol, 2022, 29: S145-S154 [2023-02-21]. DOI: 10.1016/j.acra.2020.10.020.
LI W, YU K, FENG C L, et al. Molecular subtypes recognition of breast cancer in dynamic contrast-enhanced breast magnetic resonance imaging phenotypes from radiomics data[J/OL]. Comput Math Methods Med, 2019, 2019: 1-14 [2023-02-21]. DOI: 10.1155/2019/6978650.
HUANG Y H, WEI L H, HU Y L, et al. Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer[J/OL]. Front Oncol, 2021, 11: 706733 [2023-02-21]. DOI: 10.3389/fonc.2021.706733.
WU Z, QIU J, MU Z, et al. Multiparameter MR-based radiomics for the classification of breast cancer molecular subtypes[J/OL]. Int J Radiat Oncol, 2020, 108(3): e786 [2023-02-21]. DOI: 10.1016/j.ijrobp.2020.07.253.
WANG X, WANG X Y, ZHANG Y J, et al. Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer[J/OL]. Ann Transl Med, 2022, 10(13): 749 [2023-02-21]. DOI: 10.21037/atm-22-2844.
MA M M, GAN L Y, JIANG Y, et al. Radiomics analysis based on automatic image segmentation of DCE-MRI for predicting triple-negative and nontriple-negative breast cancer[J/OL]. Comput Math Methods Med, 2021, 2021: 1-7 [2023-02-21]. DOI: 10.1155/2021/2140465.
LI C L, YIN J D. Radiomics nomogram based on radiomics score from multiregional diffusion-weighted MRI and clinical factors for evaluating HER-2 2+ status of breast cancer[J/OL]. Diagnostics, 2021, 11(8): 1491 [2023-02-21]. DOI: 10.3390/diagnostics11081491.
LAFCI O, CELEPLI P, SEHER ÖZTEKIN P, et al. DCE-MRI radiomics analysis in differentiating luminal A and luminal B breast cancer molecular subtypes[J]. Acad Radiol, 2023, 30(1): 22-29. DOI: 10.1016/j.acra.2022.04.004.
AHN S, KIM H J, KIM M, et al. Negative conversion of progesterone receptor status after primary systemic therapy is associated with poor clinical outcome in patients with breast cancer[J]. Cancer Res Treat, 2018, 50(4): 1418-1432. DOI: 10.4143/crt.2017.552.
GAHLAUT R, BENNETT A, FATAYER H, et al. Effect of neoadjuvant chemotherapy on breast cancer phenotype, ER/PR and HER2 expression–Implications for the practising oncologist[J/OL]. Eur J Cancer, 2016, 60: 40-48 [2023-02-21]. DOI: 10.1016/j.ejca.2016.03.006.
LIU H Q, LIN S Y, SONG Y D, et al. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy[J/OL]. Eur Radiol, 2023, 33(4): 2965-2974. DOI: 10.1007/s00330-022-09264-7.
ZHUANG X S, CHEN C, LIU Z Y, et al. Multiparametric MRI-based radiomics analysis for the prediction of breast tumor regression patterns after neoadjuvant chemotherapy[J/OL]. Transl Oncol, 2020, 13(11): 100831 [2023-02-21]. DOI: 10.1016/j.tranon.2020.100831.
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
CHEN S J, SHU Z Y, LI Y F, et al. Machine learning-based radiomics nomogram using magnetic resonance images for prediction of neoadjuvant chemotherapy efficacy in breast cancer patients[J/OL]. Front Oncol, 2020, 10: 1410 [2023-02-21]. DOI: 10.3389/fonc.2020.01410.
LIANG X H, YU X Y, GAO T H. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis[J/OL]. Eur J Radiol, 2022, 150: 110247 [2023-02-21]. DOI: 10.1016/j.ejrad.2022.110247.
HERRERO VICENT C, TUDELA X, MORENO RUIZ P, et al. Machine learning models and multiparametric magnetic resonance imaging for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer[J/OL]. Cancers, 2022, 14(14): 3508 [2023-02-21]. DOI: 10.3390/cancers14143508.
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2023-02-21]. DOI: 10.1186/s13058-017-0862-1.
LI C C, LU N, HE Z F, et al. ASO visual abstract: a noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7694-7695. DOI: 10.1245/s10434-022-12078-y.
XIONG Q, ZHOU X, LIU Z, et al. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy[J/OL]. Breast, 2019, 44: S68 [2023-02-21]. DOI: 10.1016/s0960-9776(19)30256-5.
FENG W, GAO Y, LU X R, et al. Correlation between molecular prognostic factors and magnetic resonance imaging intravoxel incoherent motion histogram parameters in breast cancer[J/OL]. Magn Reson Imaging, 2022, 85: 262-270 [2023-02-21]. DOI: 10.1016/j.mri.2021.10.027.
LIU M J, MAO N, MA H, et al. Pharmacokinetic parameters and radiomics model based on dynamic contrast enhanced MRI for the preoperative prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2020, 20(1): 65 [2023-02-21]. DOI: 10.1186/s40644-020-00342-x.
ZHU Y D, YANG L, SHEN H L. Value of the application of CE-MRI radiomics and machine learning in preoperative prediction of sentinel lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2021, 11: 757111 [2023-02-21]. DOI: 10.3389/fonc.2021.757111.
TANG Y Q, CHEN L, QIAO Y T, et al. Radiomic signature based on dynamic contrast-enhanced MRI for evaluation of axillary lymph node metastasis in breast cancer[J/OL]. Comput Math Methods Med, 2022, 2022: 1-12 [2023-02-21]. DOI: 10.1155/2022/1507125.
MA M M, JIANG Y Y, QIN N S, et al. A radiomics model for preoperative predicting sentinel lymph node metastasis in breast cancer based on dynamic contrast-enhanced MRI[J/OL]. Front Oncol, 2022, 12: 884599 [2023-02-21]. DOI: 10.3389/fonc.2022.884599.
LIU Y, LI X, ZHU L N, et al. Preoperative prediction of axillary lymph node metastasis in breast cancer based on intratumoral and peritumoral DCE-MRI radiomics nomogram[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 1-10 [2023-02-21]. DOI: 10.1155/2022/6729473.
DIRICAN E, KILIÇ E. A machine learning approach for the association of Ki-67 scoring with prognostic factors[J/OL]. J Oncol, 2018, 2018: 1-7 [2023-02-21]. DOI: 10.1155/2018/1912438.
LIANG C S, CHENG Z X, HUANG Y Q, et al. An MRI-based radiomics classifier for preoperative prediction of Ki-67 status in breast cancer[J]. Acad Radiol, 2018, 25(9): 1111-1117. DOI: 10.1016/j.acra.2018.01.006.
FAN M, YUAN W, ZHAO W R, et al. Joint prediction of breast cancer histological grade and Ki-67 expression level based on DCE-MRI and DWI radiomics[J]. IEEE J Biomed Health Inform, 2020, 24(6): 1632-1642. DOI: 10.1109/JBHI.2019.2956351.
KAYADIBI Y, KOCAK B, UCAR N, et al. Radioproteomics in breast cancer: prediction of Ki-67 expression with MRI-based radiomic models[J/OL]. Acad Radiol, 2022, 29: S116-S125 [2023-02-21]. DOI: 10.1016/j.acra.2021.02.001.
ZHANG Y, ZHU Y F, ZHANG K, et al. Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps[J]. La Radiol Med, 2020, 125(2): 109-116. DOI: 10.1007/s11547-019-01100-1.
SATAKE H, ISHIGAKI S, ITO R, et al. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence[J]. Radiol med, 2022, 127(1): 39-56. DOI: 10.1007/s11547-021-01423-y.
CHEN H F, LAN X S, YU T, et al. Development and validation of a radiogenomics model to predict axillary lymph node metastasis in breast cancer integrating MRI with transcriptome data: a multicohort study[J/OL]. Front Oncol, 2022 [2023-02-21]. DOI: 10.3389/fonc.2022.1076267.
LI X, YANG L F, JIAO X. Comparison of traditional radiomics, deep learning radiomics and fusion methods for axillary lymph node metastasis prediction in breast cancer[J]. Acad Radiol, 2023, 30(7): 1281-1287. DOI: 10.1016/j.acra.2022.10.015.

PREV Research progress of MRI based radiomics in lung cancer
NEXT Research progress of radiomics based on MRI for prediction of axillary lymph node metastasis in breast cancer

Tel & Fax: +8610-67113815    E-mail: