Share this content in WeChat
Research progress of MRI in cognitive impairment of Parkinson's disease
SUN Weiyang  SHI Xiaohang  FAN Yu  WANG Chong  WANG Xiaoshen  WANG Yuning  LI Nan  LIANG Yanming  XING Jian 

Cite this article as: SUN W Y, SHI X H, FAN Y, et al. Research progress of MRI in cognitive impairment of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(7): 134-138. DOI:10.12015/issn.1674-8034.2023.07.024.

[Abstract] Cognitive impairment of Parkinson's disease (PD) is one of the most important non-motor manifestations. In recent years, with the update of imaging equipment and the development of image processing technology, brain structural and functional imaging can observe the density, volume and structural integrity of brain tissue, providing an important help for clinical analysis of cognitive function changes. In this paper, voxel-based morphometry (VBM), surface-based morphometry (SBM), diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI) are discussed, we analyze and summarize the characteristics and advantages of different research means, for research scholars to further explore, specifically propose the development direction of future imaging research in the diagnosis of cognitive impairment in PD, to provide important imaging help for clinical analysis of cognitive function changes, to help patients diagnose cognitive decline and predict the decline trend, and improve the quality of life.
[Keywords] Parkinson's disease;cognitive impairment;brain structure;magnetic resonance imaging;morphometry

SUN Weiyang1   SHI Xiaohang1   FAN Yu1   WANG Chong1   WANG Xiaoshen1   WANG Yuning1   LI Nan1   LIANG Yanming1   XING Jian2*  

1 Graduate School of Mudanjiang Medical College, Mudanjiang 157011, China

2 Department of MR, Hongqi Hospital Afiliated to Mudanjiang Medical College, Mudanjiang 157011, China

Corresponding author: Xing J, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Heilongjiang Province in 2022 (No. SS2022H004).
Received  2023-03-21
Accepted  2023-06-29
DOI: 10.12015/issn.1674-8034.2023.07.024
Cite this article as: SUN W Y, SHI X H, FAN Y, et al. Research progress of MRI in cognitive impairment of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(7): 134-138. DOI:10.12015/issn.1674-8034.2023.07.024.

NEMADE D, SUBRAMANIAN T, SHIVKUMAR V. An Update on Medical and Surgical Treatments of Parkinson's Disease[J]. Aging Dis, 2021, 12(4): 1021-1035. DOI: 10.14336/AD.2020.1225.
BLOEM B R, OKUN M S, KLEIN C. Parkinson's disease[J]. Lancet, 2021, 397(10291): 2284-2303. DOI: 10.1016/S0140-6736(21)00218-X.
JURCAU A, NUNKOO V S. Clinical Markers May Identify Patients at Risk for Early Parkinson's Disease Dementia: A Prospective Study[J/OL]. Am J Alzheimers Dis Other Demen, 2021, 36: 15333175211021369 [2023-03-06]. DOI: 10.1177/15333175211021369.
VASCONCELLOS L F R, PEREIRA J S, CHARCHAT-FICHMAN H, et al. Mild cognitive impairment in Parkinson's disease: Characterization and impact on quality of life according to subtype[J]. Geriatr Gerontol Int, 2019, 19(6): 497-502. DOI: 10.1111/ggi.13649.
HU J, TANG L W, LI X X, et al. Influence of family factors on prognosis of Parkinson's disease patients[J]. Chinese Journal of Practical Nervous Disease, 2020, 23(9): 781-784. DOI: 10.12083/SYSJ.2020.09.123.
LITVAN I, GOLDMAN J G, TRÖSTER A I, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines[J]. Mov Disord, 2012, 27(3): 349-356. DOI: 10.1002/mds.24893.
PRANGE S, KLINGER H, LAURENCIN C, et al. Depression in Patients with Parkinson's Disease: Current Understanding of its Neurobiology and Implications for Treatment. Drugs Aging. 2022, 39(6): 417-439. DOI: 10.1007/s40266-022-00942-1.
LU N, LI C M, LI S H, et al. Quantitative investigation of global volumetry and relaxometry of the brain in Parkinson's disease patients using synthetic MRI[J]. Chin J Magn Reson Imaging, 2021, 12(4): 1-29. DOI: 10.12015/issn.1674-8034.2021.04.001.
OH B H, MOON H C, KIM A, et al. Prefrontal and hippocampal atrophy using 7-Tesla magnetic resonance imaging in patients with Parkinson's disease[J/OL]. Acta Radiol Open, 2021, 10(2): 2058460120988097 [2023-03-08]. DOI: 10.1177/2058460120988097.
WEN M C, NG A, CHANDER R J, et al. Longitudinal brain volumetric changes and their predictive effects on cognition among cognitively asymptomatic patients with Parkinson's disease[J]. Parkinsonism Relat Disord, 2015, 21(5): 483-488. DOI: 10.1016/j.parkreldis.2015.02.014.
ZHOU C, GUAN X J, GUO T, et al. Progressive brain atrophy in Parkinson's disease patients who convert to mild cognitive impairment[J]. CNS Neurosci Ther, 2020, 26(1): 117-125. DOI: 10.1111/cns.13188.
DONZUSO G, MONASTERO R, CICERO C E, et al. Neuroanatomical changes in early Parkinson's disease with mild cognitive impairment: a VBM study; the Parkinson's Disease Cognitive Impairment Study (PaCoS)[J]. Neurol Sci, 2021, 42(9): 3723-3731. DOI: 10.1007/s10072-020-05034-9.
NOH S W, HAN Y H, MUN C W, et al. Analysis among cognitive profiles and gray matter volume in newly diagnosed Parkinson's disease with mild cognitive impairment[J]. Neurol Sci, 2014, 347(1-2): 210-213. DOI: 10.1016/j.jns.2014.09.049.
PAGONABARRAGA J, SORIANO-MAS C, LLEBARIA G, et al. Neural correlates of minor hallucinations in non-demented patients with Parkinson's disease[J]. Parkinsonism Relat Disord, 2014, 20(3): 290-296. DOI: 10.1016/j.parkreldis.2013.11.017.
NYATEGA C O, QIANG L, ADAMU M J, et al. Gray matter, white matter and cerebrospinal fluid abnormalities in Parkinson's disease: A voxel-based morphometry study[J/OL]. Front Psychiatry, 2022, 13: 1027907 [2023-03-06]. DOI: 10.3389/fpsyt.2022.1027907.
COUNSELL C, GIUNTOLI C, KHAN Q I, et al. The incidence, baseline predictors, and outcomes of dementia in an incident cohort of Parkinson's disease and controls[J]. J Neurol, 2022, 269(8): 4288-4298. DOI: 10.1007/s00415-022-11058-2.
ARVANITAKIS Z, SHAH R C, BENNETT D A. Diagnosis and Management of Dementia: Review[J]. JAMA, 2019, 322(16): 1589-1599. DOI: 10.1001/jama.2019.4782.
BEYER M K, JANVIN C C, LARSEN J P, et al. A magnetic resonance imaging study of patients with Parkinson's disease with mild cognitive impairment and dementia using voxel-based morphometry[J]. Neurol Neurosurg Psychiatry, 2007, 78(3): 254-259. DOI: 10.1136/jnnp.2006.093849.
XU Y, YANG J, HU X, et al. Voxel-based meta-analysis of gray matter volume reductions associated with cognitive impairment in Parkinson's disease[J]. Neurol, 2016, 263(6): 1178-1187. DOI: 10.1007/s00415-016-8122-3
BEJR-KASEM H, SAMPEDRO F, MARÍN-LAHOZ J, et al. Minor hallucinations reflect early gray matter loss and predict subjective cognitive decline in Parkinson's disease[J]. Eur J Neurol, 2021, 28(2): 438-447. DOI: 10.1111/ene.14576.
PERAZA L R, COLLOBY S J, FIRBANK M J, et al. Resting state in Parkinson's disease dementia and dementia with Lewy bodies: commonalities and differences[J]. Int J Geriatr Psychiatry, 2015, 30(11): 1135-1146. DOI: 10.1002/gps.4342.
HUANG C, MATTIS P, TANG C, et al. Metabolic brain networks associated with cognitive function in Parkinson's disease[J]. Neuroimage, 2007, 34(2): 714-723. DOI: 10.1002/gps.4342.
GOTO M, ABE O, HAGIWARA A, et al. Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications[J]. Magn Reson Med Sci, 2022, 21(1): 41-57. DOI: 10.2463/mrms.rev.
SHENG L, ZHAO P, MA H, et al. Cortical thickness in Parkinson's disease: a coordinate-based meta-analysis[J]. Aging (Albany NY), 2021, 13(3): 4007-4023. DOI: 10.18632/aging.202368.
LI L, JI B, ZHAO T, et al. The structural changes of gray matter in Parkinson disease patients with mild cognitive impairments[J/OL]. PLoS One, 2022, 17(7): e0269787 [2023-03-05]. DOI: 10.1371/journal.pone.0269787.
BIUNDO R, CALABRESE M, WEIS L, et al. Anatomical correlates of cognitive functions in early Parkinson's disease patients[J/OL]. PLoS One, 2013, 8(5): e64222 [2023-03-05]. DOI: 10.1371/journal.pone.0064222.
CICERO C E, DONZUSO G, LUCA A, et al. Morphometric magnetic resonance imaging cortico-subcortical features in Parkinson's disease with mild cognitive impairment[J]. Eur J Neurol, 2022, 29(11): 3197-3204. DOI: 10.1111/ene.15489.
PELLICANO C, ASSOGNA F, PIRAS F, et al. Regional cortical thickness and cognitive functions in non-demented Parkinson's disease patients: a pilot study[J]. Eur J Neurol, 2012, 19(1): 172-175. DOI: 10.1111/j.1468-1331.2011.03465.
YE B S, JEON S, YOON S, et al. Effects of dopaminergic depletion and brain atrophy on neuropsychiatric symptoms in de novo Parkinson's disease[J]. Neurol Neurosurg Psychiatry, 2018, 89(2): 197-204. DOI: 10.1136/jnnp-2017-316075.
TREMBLAY C, ABBASI N, ZEIGHAMI Y, et al. Sex effects on brain structure in de novo Parkinson's disease: a multimodal neuroimaging study[J]. Brain, 2020, 143(10): 3052-3066. DOI: 10.1093/brain/awaa234.
Chung S J, Yoo H S, Lee Y H, et al. Frontal atrophy as a marker for dementia conversion in Parkinson's disease with mild cognitive impairment[J]. Hum Brain Mapp, 2019, 40(13): 3784-3794. DOI: 10.1002/hbm.24631.
FILIPPI M, CANU E, DONZUSO G, et al. Tracking Cortical Changes Throughout Cognitive Decline in Parkinson's Disease[J]. Mov Disord, 2020, 35(11): 1987-1998. DOI: 10.1002/mds.28228.
COSKUNER-WEBER O, UVERSKY V N. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology[J]. Int J Mol Sci, 2018, 19(2): 336. DOI: 10.3390/ijms19020336.
SAMPEDRO F, KULISEVSKY J. Intracortical surface-based MR diffusivity to investigate neurologic and psychiatric disorders: a review[J]. J Neuroimaging, 2022, 32(1): 28-35. DOI: 10.1111/jon.12930.
TAE W S, HAM B J, PYUN S B, et al. Current Clinical Applications of Diffusion-Tensor Imaging in Neurological Disorders[J]. Clin Neurol, 2018, 14(2): 129-140. DOI: 10.3988/jcn.2018.14.2.129.
GUIMARÃES R P, CAMPOS B M, DE REZENDE T J, et al. Is Diffusion Tensor Imaging a Good Biomarker for Early Parkinson's Disease?[J/OL]. Front Neurol, 2018, 9: 626 [2023-03-09]. DOI: 10.3389/fneur.2018.00626.
CHONDROGIORGI M, ASTRAKAS L G, ZIKOU A K, et al. Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson's disease patients[J]. Brain Imaging Behav, 2019, 3(1): 232-240. DOI: 10.1007/s11682-018-9863-7.
INGUANZO A, SEGURA B, SALA-LLONCH R, et al. Impaired Structural Connectivity in Parkinson's Disease Patients with Mild Cognitive Impairment: A Study Based on Probabilistic Tractography[J]. Brain Connect, 2021, 11(5): 380-392. DOI: 10.1089/brain.2020.0939.
WANG W, MEI M, GAO Y, et al. Changes of brain structural network connection in Parkinson's disease patients with mild cognitive dysfunction: a study based on diffusion tensor imaging[J]. Neurol, 2020, 267(4): 933-943. DOI: 10.1007/s00415-019-09645-x.
Gorges M, Müller H P, Liepelt-Scarfone I, et al. Structural brain signature of cognitive decline in Parkinson's disease: DTI-based evidence from the LANDSCAPE study[J]. Ther Adv Neurol Disord, 2019, 12: 1756-2864. DOI: 10.1177/1756286419843447.
Minett T, Su L, Mak E, et al. Longitudinal diffusion tensor imaging changes in early Parkinson's disease: ICICLE-PD study[J]. J Neurol, 2018, 265(7): 1528-1539. DOI: 10.1007/s00415-018-8873-0.
RUPPERT M C, GREUEL A, FREIGANG J, et al. The default mode network and cognition in Parkinson's disease: A multimodal resting-state network approach[J]. Hum Brain Mapp, 2021, 42(8): 2623-2641. DOI: 10.1002/hbm.25393.
GONZALEZ-CASTILLO J, KAM J W Y, HOY C W, et al. How to Interpret Resting-State fMRI: Ask Your Participants[J]. J Neurosci, 2021, 41(6): 1130-1141. DOI: 10.1523/JNEUROSCI.1786-20.2020.
LI X L, JIANG X X, WANG F, et al. Research progress of resting state functional magnetic resonance imaging data analysis in Parkinson's disease[J]. Shandong Medical Journal, 2020, 60(11): 91-93. DOI: 10.16047/j.cnki.cn14-1300/r.2022.11.014.
WANG Q, HE W, LIU D, et al. Functional Connectivity in Parkinson's Disease Patients with Mild Cognitive Impairment[J]. Int J Gen Med, 2021, 17(14): 2623-2630. DOI: 10.2147/IJGM.S300422.
WOLTERS A F, VAN DE WEIJER S C F, LEENTJENS A F G, et al. Resting-state fMRI in Parkinson's disease patients with cognitive impairment: A meta-analysis[J]. Parkinsonism Relat Disord, 2019, 62: 16-27. DOI: 10.1016/j.parkreldis.
LANG S, YOON E J, KIBREAB M, et al. Mild behavioral impairment in Parkinson's disease is associated with altered corticostriatal connectivity[J/OL]. Neuroimage Clin, 2020, 26: 102252 [2023-03-01]. DOI: 10.1016/j.nicl.2020.102252.
OWENS-WALTON C, JAKABEK D, POWER B D, et al. Structural and functional neuroimaging changes associated with cognitive impairment and dementia in Parkinson's disease[J/OL]. Psychiatry Res Neuroimaging, 2021, 312: 111273 [2023-03-01]. DOI: 10.1016/j.pscychresns.
BOON L I, HEPP D H, DOUW L, et al. Functional connectivity between resting-state networks reflects decline in executive function in Parkinson's disease: A longitudinal fMRI study[J/OL]. Neuroimage Clin, 2020, 28: 102468 [2023-03-02]. DOI: 10.1016/j.nicl.2020.102468.
ZARIFKAR P, KIM J, LA C, et al. Cognitive impairment in Parkinson's disease is associated with Default Mode Network subsystem connectivity and cerebrospinal fluid Aβ[J]. Parkinsonism Related Disord, 2021, 83: 71-78. DOI: 10.1016/j.parkreldis.2021.01.002.

PREV Research progress of magnetic resonance cerebral perfusion imaging in Alzheimer,s disease
NEXT Research progress of brain network in obstructive sleep apnea

Tel & Fax: +8610-67113815    E-mail: