Share this content in WeChat
Technical Articles
The evaluation and quantitative analysis of MR 3D-Vibe combined with T2 mapping imaging on triangular fibrocartilage complex injury of wrist joint
DU Kangjia  YAN Mei  WEN Shengbao  WANG Xiaoping  WU Yousen  WANG Xueyan 

Cite this article as: DU K J, YAN M, WEN S B, et al. The evaluation and quantitative analysis of MR 3D-Vibe combined with T2 mapping imaging on triangular fibrocartilage complex injury of wrist joint[J]. Chin J Magn Reson Imaging, 2023, 14(7): 115-120. DOI:10.12015/issn.1674-8034.2023.07.020.

[Abstract] Objective To investigate the value of 3.0 T MRI three dimension volumetric interpolated breath-hold examination (3D-Vibe) and T2 mapping in the evaluation of triangular fibrocartilage complex (TFCC) injury and quantitative analysis of cartilage.Materials and Methods Routine, 3D-Vibe and T2 mapping sequence scanning of bilateral wrist joints was performed in 35 patients with TFCC injury and 30 healthy controls. The T2 values of radial cartilage, triangular fibrocartilage disc (TFC), fibrovascular tissue, meniscus and ulnar attachment were measured respectively in T2 mapping imaging.Results There was no significant difference in T2 value between the meniscus injury group and healthy group (P>0.05), and the overall mean of T2 values between the injury group and the healthy group in other regions showed statistical difference (P<0.01). The T2 values of each region in the injury group were statistically significant (P<0.05). The overall mean of T2 values in different age groups was statistically different (P<0.05). The classification and course of disease had a significant effect on the T2 value of patients with TFCC injury (P<0.01); Age and sex had no significant effect on T2 value of patients with TFCC injury (P>0.05).Conclusions The 3.0 T MRI 3D-Vibe and T2 mapping imaging techniques are helpful for the evaluation of TFCC injury and quantitative analysis of cartilage. The T2 value can reflect the molecular biological changes of cartilage injury, which is susceptible to injury classification and course of disease, but not affected by age and gender.
[Keywords] wrist joint;triangular fibrocartilage complex;magnetic resonance imaging;three dimension volumetric interpolated breath-hold examination;T2 mapping

DU Kangjia1   YAN Mei2   WEN Shengbao2*   WANG Xiaoping2   WU Yousen2   WANG Xueyan2  

1 Department of Clinical Medicine, Medical College of Qinghai University, Xining 810000, China

2 Department of Imaging Center, the Affiliated Hospital of Qinghai University, Xining 810000, China

Corresponding author: Wen SB, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS General Guiding Subject of Qinghai Provincial Health Commission (No. 2020-wjzdx-55, 2021-wjzdx-40).
Received  2022-09-26
Accepted  2023-06-28
DOI: 10.12015/issn.1674-8034.2023.07.020
Cite this article as: DU K J, YAN M, WEN S B, et al. The evaluation and quantitative analysis of MR 3D-Vibe combined with T2 mapping imaging on triangular fibrocartilage complex injury of wrist joint[J]. Chin J Magn Reson Imaging, 2023, 14(7): 115-120. DOI:10.12015/issn.1674-8034.2023.07.020.

DUNN J C, POLMEAR M M, NESTI L J. Surgical repair of acute TFCC injury[J]. Hand (N Y), 2020, 15(5): 674-678. DOI: 10.1177/1558944719828007.
PALMER A K. Triangular fibrocartilage complex lesions: a classification[J]. J Hand Surg Am, 1989, 14(4): 594-606. DOI: 10.1016/0363-5023(89)90174-3.
LOU L X, YU A H, CHENG X G, et al. Diagnosis of focal fibrocartilaginous dysplasia in children by MR 3D-VIBE sequence[J]. Radiol Pract, 2019, 34(1): 75-78. DOI: 10.13609/j.cnki.1000-0313.2019.01.015.
SCHENK H, SIMON D, WALDENMEIER L, et al. Regions at risk in the knee joint of young professional soccer players: longitudinal evaluation of early cartilage degeneration by quantitative T2 mapping in 3 T MRI[J]. Cartilage, 2021, 13(1_suppl): 595S-603S. DOI: 10.1177/1947603520924773.
CASULA V, TAJIK B E, KVIST J, et al. Quantitative evaluation of the tibiofemoral joint cartilage by T2 mapping in patients with acute anterior cruciate ligament injury vs contralateral knees: results from the subacute phase using data from the NACOX study cohort[J]. Osteoarthritis Cartilage, 2022, 30(7): 987-997. DOI: 10.1016/j.joca.2022.02.623.
BITTERSOHL B, MIESE F R, HOSALKAR H S, et al. T2* mapping of hip joint cartilage in various histological grades of degeneration[J]. Osteoarthritis Cartilage, 2012, 20(7): 653-660. DOI: 10.1016/j.joca.2012.03.011.
LIU X F, WEI L, MOU J, et al. Quantitative analysis of T2 value of shoulder joint cartilage in healthy young adult using T2 mapping[J]. Chin J Med Imaging Technol, 2017, 33(11): 1688-1691. DOI: 10.13929/j.1003-3289.201702004
CHIANCA V, ALBANO D, CUOCOLO R, et al. T2 mapping of the trapeziometacarpal joint and triangular fibrocartilage complex: a feasibility and reproducibility study at 1.5 T[J]. Radiol Med, 2020, 125(3): 306-312. DOI: 10.1007/s11547-019-01123-8.
QI Y M, DENG X, WANG Y, et al. Evaluation on the differences of wrist triangular fibrocartilage complex with T2 mapping in healthy adults[J]. Chin J Med Imaging Technol, 2020, 36(3): 448-452. DOI: 10.13929/j.issn.1003-3289.2020.03.035.
TAKAGI T, NAKAMURA T, FUKUOKA M. Arthroscopic capsular repair for triangular fibrocartilage complex tears[J]. J Wrist Surg, 2021, 10(3): 249-254. DOI: 10.1055/s-0040-1721140.
DAUN M, RUDD A, CHENG K R, et al. Magnetic resonance imaging of the triangular fibrocartilage complex[J]. Top Magn Reson Imaging, 2020, 29(5): 237-244. DOI: 10.1097/RMR.0000000000000253.
ZHAN H L, BAI R J, QIAN Z H, et al. Traumatic injury of the triangular fibrocartilage complex (TFCC)-a refinement to the Palmer classification by using high-resolution 3-T MRI[J]. Skeletal Radiol, 2020, 49(10): 1567-1579. DOI: 10.1007/s00256-020-03438-4.
THIRU R G, FERLIC D C, CLAYTON M L, et al. Arterial anatomy of the triangular fibrocartilage of the wrist and its surgical significance[J]. J Hand Surg Am, 1986, 11(2): 258-263. DOI: 10.1016/s0363-5023(86)80065-x.
VERSCHUEREN J, VAN LANGEVELD S J, DRAGOO J L, et al. T2 relaxation times of knee cartilage in 109 patients with knee pain and its association with disease characteristics[J]. Acta Orthop, 2021, 92(3): 335-340. DOI: 10.1080/17453674.2021.1882131.
LOU L X, LI X M, GONG L H, et al. Magnetic resonance imaging of focal fibrocartilaginous dysplasia-findings derived from a three-dimensional gradient echo sequence[J]. Pediatr Radiol, 2022, 52(1): 58-64. DOI: 10.1007/s00247-021-05175-9.
RENNER N, KLEYER A, KRÖNKE G, et al. T2 mapping as a new method for quantitative assessment of cartilage damage in rheumatoid arthritis[J]. J Rheumatol, 2020, 47(6): 820-825. DOI: 10.3899/jrheum.180728.
STAHL R, BLUMENKRANTZ G, CARBALLIDO-GAMIO J, et al. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up[J]. Osteoarthritis Cartilage, 2007, 15(11): 1225-1234. DOI: 10.1016/j.joca.2007.04.018.
HANNILA I, NIEMINEN M T, RAUVALA E, et al. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping[J]. Acta Radiol, 2007, 48(4): 444-448. DOI: 10.1080/02841850701280817.
WUENNEMANN F, KINTZELÉ L, BRAUN A, et al. 3-T T2 mapping magnetic resonance imaging for biochemical assessment of normal and damaged glenoid cartilage: a prospective arthroscopy-controlled study[J/OL]. Sci Rep, 2020, 10(1): 14396 [2022-06-15]. DOI: 10.1038/s41598-020-71311-4.
MITTAL S, PRADHAN G, SINGH S, et al. T1 and T2 mapping of articular cartilage and menisci in early osteoarthritis of the knee using 3-Tesla magnetic resonance imaging[J/OL]. Pol J Radiol, 2019, 84: e549-e564 [2022-05-12]. DOI: 10.5114/pjr.2019.91375.
WATRIN A, RUAUD J P B, OLIVIER P T A, et al. T2 mapping of rat patellar cartilage[J]. Radiology, 2001, 219(2): 395-402. DOI: 10.1148/radiology.219.2.r01ma32395.
MATTHEW R, SKALSKI, DC, et al. The traumatized TFCC: an illustrated review of the anatomy and injury patterns of the triangular fibrocartilage complex[J]. Curr Probl Diagn Radiol, 2016, 45(1): 39-50. DOI: 10.1067/j.cpradiol.2015.05.004.
RAUSCHER I, BENDER B, GRÖZINGER G, et al. Assessment of T1, T1ρ, and T2 values of the ulnocarpal disc in healthy subjects at 3 Tesla[J]. Magn Reson Imaging, 2014, 32(9): 1085-1090. DOI: 10.1016/j.mri.2014.05.010.
MIKIĆ Z D. Age changes in the triangular fibrocartilage of the wrist joint[J]. J Anat, 1978, 126(Pt 2): 367-384.
DING W, ZHANG N, ZHANG Y, et al. Application value of magnetic resonance T2mapping in the diagnosis of knee osteoarthritis[J]. Chin J Prim Med Pharm, 2022, 29(4): 563-566. DOI: 10.3760/cma.j.issn.1008-6706.2022.04.019.
WANG Y, ZHANG M Q, HUAN Z K, et al. FSH directly regulates chondrocyte dedifferentiation and cartilage development[J]. J Endocrinol, 2021, 248(2): 193-206. DOI: 10.1530/JOE-20-0390.
ZHANG P, YU B H, ZHANG R X, et al. Longitudinal study of the morphological and T2* changes of knee cartilages of marathon runners using prototype software for automatic cartilage segmentation[J/OL]. Br J Radiol, 2021, 94(1119): 20200833 [2022-09-14]. DOI: 10.1259/bjr.20200833.
LEE S Y, PARK H J, KWON H J, et al. T2 relaxation times of the glenohumeral joint at 3.0 T MRI in patients with and without primary and secondary osteoarthritis[J]. Acta Radiol, 2015, 56(11): 1388-1395. DOI: 10.1177/0284185114556304.
REHNITZ C, KUNI B, WUENNEMANN F, et al. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping of talar osteochondral lesions: indicators of clinical outcomes[J]. J Magn Reson Imaging, 2017, 46(6): 1601-1610. DOI: 10.1002/jmri.25731.
REHNITZ C, KUPFER J, STREICH N A, et al. Comparison of biochemical cartilage imaging techniques at 3 T MRI[J]. Osteoarthritis Cartilage, 2014, 22(10): 1732-1742. DOI: 10.1016/j.joca.2014.04.020.
MARS M, CHELLI M, TBINI Z, et al. MRI T2 mapping of knee articular cartilage using different acquisition sequences and calculation methods at 1.5 Tesla[J]. Med Princ Pract, 2018, 27(5): 443-450. DOI: 10.1159/000490796.
TENG P H, ZHANG B T, YANG H M, et al. Identification of triangular fibrocartilage complex injury based on MRI radiomics model[J]. Chin J Magn Reson Imaging, 2022, 13(9): 58-62. DOI: 10.12015/issn.1674-8034.2022.09.011.

PREV Study of conventional MRI combined with SWI on brain damage after asphyxia in neonatal rats and compared with pathological
NEXT Research on the method of brain magnetic resonance synthetic DWI generation based on the cycle generative adversarial network

Tel & Fax: +8610-67113815    E-mail: