Share this content in WeChat
Research progress of brain function magnetic resonance imaging in patients with pain-depression comorbidity
TIAN Yu  PENG Juan  LIU Songjiang  CHEN Kuntao 

Cite this article as: TIAN Y, PENG J, LIU S J, et al. Research progress of brain function magnetic resonance imaging in patients with pain-depression comorbidity[J]. Chin J Magn Reson Imaging, 2023, 14(6): 103-107. DOI:10.12015/issn.1674-8034.2023.06.018.

[Abstract] Pain and depression are both common clinical diseases that often accompany each other. Moreover, the prognosis of patients with comorbid pain and depression is worse and the treatment cost is higher than that of patients with a single disease, seriously affecting the quality of life of patients. At present, the pathogenesis of pain-depression comorbidity is still unclear. Functional magnetic resonance imaging (fMRI) is a non-radiation, non-invasive functional imaging technique, which has been widely used in cognitive neuroscience and neuropsychiatry research by detecting the oxygen saturation level of brain tissue to reflect the activation degree of neurons. Based on the review of fMRI research on pain-depression comorbidity in recent years, this study found that neuroplastic changes and inflammatory factor theory may be an important cause of pain-depression comorbidity, and pain-depression comorbidity leads to the parietal cortex, amygdala, anterior cingulate cortex and other brain regions, as well as their neural circuits and abnormal functional connections may be the neuroimaging basis of the comorbidity of the two. This article reviews the research progress of fMRI in pain-depression comorbidity, provides a reference direction for future research, and provides an objective imaging basis for further revealing the central mechanism of pain-depression comorbidity.
[Keywords] depression;pain;resting state functional magenetic resonance imaging;magenetic resonance imaging

TIAN Yu1   PENG Juan2   LIU Songjiang3   CHEN Kuntao1*  

1 Department of Radiology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519100, China

2 School of Management, Zunyi Medical University, Zunyi 563003, China

3 Department of Radiology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China

Corresponding author: Chen KT, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Science and Technology Fund Project of Guizhou Provincial Health Commission (No. gzwkj2022-332).
Received  2022-12-30
Accepted  2023-05-24
DOI: 10.12015/issn.1674-8034.2023.06.018
Cite this article as: TIAN Y, PENG J, LIU S J, et al. Research progress of brain function magnetic resonance imaging in patients with pain-depression comorbidity[J]. Chin J Magn Reson Imaging, 2023, 14(6): 103-107. DOI:10.12015/issn.1674-8034.2023.06.018.

LU J, XU X, HUANG Y, et al. Prevalence of depressive disorders and treatment in China: a cross-sectional epidemiological study[J]. Lancet Psychiatry, 2021, 8(11): 981-990. DOI: 10.1016/s2215-0366(21)00251-0.
AVENEVOLI S, SWENDSEN J, HE J P, et al. Major depression in the national comorbidity survey-adolescent supplement: prevalence, correlates, and treatment[J/OL]. J Am Acad Child Adolesc Psychiatry, 2015, 54(1): 37-44 e2 [2022-12-29]. DOI: 10.1016/j.jaac.2014.10.010.
HUSSAIN H, DUBICKA B, WILKINSON P. Recent developments in the treatment of major depressive disorder in children and adolescents[J]. Evid Based Ment Health, 2018, 21(3): 101-6. DOI: 10.1136/eb-2018-102937.
WANG W, LIU Z C. Research progress on the effects of sex hormones on adolescent depression[J]. Journal of Clinical Psychiatry, 2021, 31(5): 419-421. DOI: 10.3969/j.issn.1005-3220.2021.05.025.
COHEN S P, VASE L, HOOTEN W M. Chronic pain: an update on burden, best practices, and new advances[J]. Lancet, 2021, 397(10289): 2082-2097. DOI: 10.1016/s0140-6736(21)00393-7.
TU Y, CAO J, BI Y, et al. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers[J]. Sci China Life Sci, 2021, 64(6): 879-896. DOI: 10.1007/s11427-020-1822-4.
BAIR M J, ROBINSON R L, KATON W, et al. Depression and pain comorbidity: a literature review[J]. Arch Intern Med, 2003, 163(20): 2433-2445. DOI: 10.1001/archinte.163.20.2433.
ISHAK W W, WEN R Y, NAGHDECHI L, et al. Pain and Depression: A Systematic Review[J]. Harv Rev Psychiatry, 2018, 26(6): 352-363. DOI: 10.1097/HRP.0000000000000198.
MAALLO A M S, MOULTON E A, SIEBERG C B, et al. A lateralized model of the pain-depression dyad[J/OL]. Neurosci Biobehav Rev, 2021, 127: 876-883 [2022-12-29]. DOI: 10.1016/j.neubiorev.2021.06.003.
CAMPOS A C P, ANTUNES G F, MATSUMOTO M, et al. Neuroinflammation, Pain and Depression: An Overview of the Main Findings[J/OL]. Front Psychol, 2020, 11: 1825 [2022-12-29]. DOI: 10.3389/fpsyg.2020.01825.
ZHOU Y, WANG C, LAN X, et al. Plasma inflammatory cytokines and treatment-resistant depression with comorbid pain: improvement by ketamine[J/OL]. J Neuroinflammation, 2021, 18(1): 200 [2022-12-29]. DOI: 10.1186/s12974-021-02245-5.
LIAO H Y, LIN Y W. Electroacupuncture Attenuates Chronic Inflammatory Pain and Depression Comorbidity through Transient Receptor Potential V1 in the Brain[J]. Am J Chin Med, 2021, 49(6): 1417-1435. DOI: 10.1142/s0192415x2150066x.
LEGAKIS L P, KARIM-NEJAD L, NEGUS S S. Effects of repeated treatment with monoamine-transporter-inhibitor antidepressants on pain-related depression of intracranial self-stimulation in rats[J]. Psychopharmacology (Berl), 2020, 237(7): 2201-2212. DOI: 10.1007/s00213-020-05530-y.
BURKE N N, FINN D P, ROCHE M. Neuroinflammatory Mechanisms Linking Pain and Depression[J/OL]. Mod Trends Pharmacopsychiatry, 2015, 30: 36-50 [2022-12-29]. DOI: 10.1159/000435931.
CHEN Y Y, CHEN J H, ZHANG X L, et al. Progress on inflammatory mechanism of depression comorbid with chronic pain[J]. Journal of Neuroscience and Mental Health, 2021, 21(9): 636-641. DOI: 10.3969/j.issn.1009-6574.2021.09.006.
LI Y, ZHANG H, YANG J, et al. P2Y12 receptor as a new target for electroacupuncture relieving comorbidity of visceral pain and depression of inflammatory bowel disease[J/OL]. Chin Med, 2021, 16(1): 139 [2022-12-29]. DOI: 10.1186/s13020-021-00553-9.
OGAWA S, LEE T M, KAY A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proc Natl Acad Sci U S A, 1990, 87(24): 9868-9872. DOI: 10.1073/pnas.87.24.9868.
AMINI M, PEDRAM M M, MORADI A, et al. Single and Combined Neuroimaging Techniques for Alzheimer's Disease Detection[J/OL]. Comput Intell Neurosci, 2021, 2021: 9523039 [2022-12-29]. DOI: 10.1155/2021/9523039.
FU C, AISIKAER A, CHEN Z, et al. Different Functional Network Connectivity Patterns in Epilepsy: A Rest-State fMRI Study on Mesial Temporal Lobe Epilepsy and Benign Epilepsy With Centrotemporal Spike[J/OL]. Front Neurol, 2021, 12: 668856 [2022-12-29]. DOI: 10.3389/fneur.2021.668856.
CROFTS A, KELLY M E, GIBSON C L. Imaging Functional Recovery Following Ischemic Stroke: Clinical and Preclinical fMRI Studies[J]. J Neuroimaging, 2020, 30(1): 5-14. DOI: 10.1111/jon.12668.
GONG J, WANG J, QIU S, et al. Common and distinct patterns of intrinsic brain activity alterations in major depression and bipolar disorder: voxel-based meta-analysis[J/OL]. Transl Psychiatry, 2020, 10(1): 353 [2022-12-29]. DOI: 10.1038/s41398-020-01036-5.
ZANG Y, JIANG T, LU Y, et al. Regional homogeneity approach to fMRI data analysis[J]. Neuroimage, 2004, 22(1): 394-400. DOI: 10.1016/j.neuroimage.2003.12.030.
ZANG Y F, HE Y, ZHU C Z, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI[J]. Brain Dev, 2007, 29(2): 83-91. DOI: 10.1016/j.braindev.2006.07.002.
CHAFEE M V, HEILBRONNER S R. Prefrontal cortex[J/OL]. Curr Biol, 2022, 32(8): R346-R351 [2022-12-29]. DOI: 10.1016/j.cub.2022.02.071.
KOLK S M, RAKIC P. Development of prefrontal cortex[J]. Neuropsychopharmacology, 2022, 47(1): 41-57. DOI: 10.1038/s41386-021-01137-9.
BULUBAS L, PADBERG F, MEZGER E, et al. Prefrontal resting-state connectivity and antidepressant response: no associations in the ELECT-TDCS trial[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(1): 123-134. DOI: 10.1007/s00406-020-01187-y.
ATTAL N, POINDESSOUS-JAZAT F, DE CHAUVIGNY E, et al. Repetitive transcranial magnetic stimulation for neuropathic pain: a randomized multicentre sham-controlled trial[J]. Brain, 2021, 144(11): 3328-3339. DOI: 10.1093/brain/awab208.
JANG J H, SONG E M, DO Y H, et al. Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: the involvement of DNA methylation in the prefrontal cortex[J]. Pain, 2021, 162(2): 514-530. DOI: 10.1097/j.pain.0000000000002031.
JIANG X, FU S, YIN Z, et al. Common and distinct neural activities in frontoparietal network in first-episode bipolar disorder and major depressive disorder: Preliminary findings from a follow-up resting state fMRI study[J/OL]. J Affect Disord, 2020, 260: 653-659 [2023-05-01]. DOI: 10.1016/j.jad.2019.09.063.
LAI C H. The regional homogeneity of cingulate-precuneus regions: The putative biomarker for depression and anxiety[J/OL]. J Affect Disord, 2018, 229: 171-176 [2023-05-01]. DOI: 10.1016/j.jad.2017.12.086.
KUMMER K K, MITRIC M, KALPACHIDOU T, et al. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain[J/OL]. Int J Mol Sci, 2020, 21(10): 3440 [2022-07-25]. DOI: 10.3390/ijms21103440.
BLISS T V, COLLINGRIDGE G L, KAANG B K, et al. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain[J]. Nat Rev Neurosci, 2016, 17(8): 485-496. DOI: 10.1038/nrn.2016.68.
DAI W, HUANG S, LUO Y, et al. Sex-Specific Transcriptomic Signatures in Brain Regions Critical for Neuropathic Pain-Induced Depression[J/OL]. Front Mol Neurosci, 2022, 15: 886916 [2022-12-29]. DOI: 10.3389/fnmol.2022.886916.
TAN L L, KUNER R. Neocortical circuits in pain and pain relief[J]. Nat Rev Neurosci, 2021, 22(8): 458-471. DOI: 10.1038/s41583-021-00468-2.
SHENG H Y, LV S S, CAI Y Q, et al. Activation of ventrolateral orbital cortex improves mouse neuropathic pain-induced anxiodepression[J/OL]. JCI Insight, 2020, 5(19): e133625 [2022-12-29]. DOI: 10.1172/jci.insight.133625.
GRAFF-GUERRERO A, PELLICER F, MENDOZA-ESPINOSA Y, et al. Cerebral blood flow changes associated with experimental pain stimulation in patients with major depression[J]. J Affect Disord, 2008, 107(1-3): 161-168. DOI: 10.1016/j.jad.2007.08.021.
WANG X M, TANG L, DING X H, et al. Advances in neuroimaging studies of depression with painful physical symptoms[J]. Chinese Journal of Psychiatry, 2018, 51(1): 61-64. DOI: 10.3760/cma.j.issn.1006-7884.2018.01.013
MALEJKO K, BROWN RC, PLENER PL, et al. Differential neural processing of unpleasant sensory stimulation in patients with major depression[J]. Eur Arch Psychiatry Clin Neurosci, 2021, 271(3): 557-565. DOI: 10.1007/s00406-020-01123-0.
KROPF E, SYAN S K, MINUZZI L, et al. From anatomy to function: the role of the somatosensory cortex in emotional regulation[J]. Braz J Psychiatry, 2019, 41(3): 261-269. DOI: 10.1590/1516-4446-2018-0183.
WEI X, SHI G, TU J, et al. Structural and Functional Asymmetry in Precentral and Postcentral Gyrus in Patients With Unilateral Chronic Shoulder Pain[J/OL]. Front Neurol, 2022, 13: 792695 [2023-01-04]. DOI: 10.3389/fneur.2022.792695.
HOU Q, WANG C, HOU C, et al. Individual differences in pain sensitivity in drug-naive patients with major depressive disorder: an fMRI study[J]. Brain Imaging Behav, 2021, 15(3): 1335-1343. DOI: 10.1007/s11682-020-00332-4.
LIANG J Q, LU X B, XU C X, et al. Functional changes of sensorimotor areas in first-episode major depressive disorder with somatic pain[J]. Journal of International Psychiatry, 2020, 47(2): 257-261. DOI: 10.13479/j.cnki.jip.2020.02.020.
SHAHHOSSEINI Y, MIRANDA M F. Functional Connectivity Methods and Their Applications in fMRI Data[J/OL]. Entropy (Basel), 2022, 24(3): 390 [2022-12-29]. DOI: 10.3390/e24030390.
ROLLS E T, CHENG W, DU J, et al. Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression[J]. Soc Cogn Affect Neurosci, 2020, 15(1): 75-86. DOI: 10.1093/scan/nsaa014.
WANG L, ZHAO Y, EDMISTON E K, et al. Structural and Functional Abnormities of Amygdala and Prefrontal Cortex in Major Depressive Disorder With Suicide Attempts[J/OL]. Front Psychiatry, 2019, 10: 923 [2023-05-02]. DOI: 10.3389/fpsyt.2019.00923.
HU L, XIAO M, AI M, et al. Disruption of resting-state functional connectivity of right posterior insula in adolescents and young adults with major depressive disorder[J/OL]. J Affect Disord, 2019, 257: 23-30 [2023-05-02]. DOI: 10.1016/j.jad.2019.06.057.
TU Y, JUNG M, GOLLUB R L, et al. Abnormal medial prefrontal cortex functional connectivity and its association with clinical symptoms in chronic low back pain[J]. Pain, 2019, 160(6): 1308-1318. DOI: 10.1097/j.pain.0000000000001507.
BILEK E, ZANG Z, WOLF I, et al. Neural network-based alterations during repetitive heat pain stimulation in major depression[J]. Eur Neuropsychopharmacol, 2019, 29(9): 1033-1040. DOI: 10.1016/j.euroneuro.2019.06.011.
ZHANG G, MA J, LU W, et al. Comorbid depressive symptoms can aggravate the functional changes of the pain matrix in patients with chronic back pain: A resting-state fMRI study[J/OL]. Front Aging Neurosci, 2022, 14: 935242 [2022-08-10]. DOI: 10.3389/fnagi.2022.935242.
ZHOU W, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10): 1649-1658. DOI: 10.1038/s41593-019-0468-2.
SHENG J, LIU S, WANG Y, et al. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain[J/OL]. Neural Plasticity, 2017, 2017: 1-10 [2022-12-29]. DOI: 10.1155/2017/9724371.
SERAFINI R A, PRYCE K D, ZACHARIOU V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities[J]. Biol Psychiatry, 2020, 87(1): 64-73. DOI: 10.1016/j.biopsych.2019.10.018.
ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4): 542-553. DOI: 10.1038/s41593-021-00811-x.
ZHENG C J, VAN DRUNEN S, EGOROVA-BRUMLEY N. Neural correlates of co-occurring pain and depression: an activation-likelihood estimation (ALE) meta-analysis and systematic review[J/OL]. Transl Psychiatry, 2022, 12(1): 196 [2023-01-04]. DOI: 10.1038/s41398-022-01949-3.
VIANA M C, LIM C C W, GARCIA PEREIRA F, et al. Previous Mental Disorders and Subsequent Onset of Chronic Back or Neck Pain: Findings From 19 Countries[J]. J Pain, 2018, 19(1): 99-110. DOI: 10.1016/j.jpain.2017.08.011.
MOLINA J, AMARO E, ROCHA L G S DA, et al. Functional resonance magnetic imaging (fMRI) in adolescents with idiopathic musculoskeletal pain: a paradigm of experimental pain[J/OL]. Pediatr Rheumatol Online J, 2017, 15(1): 81 [2022-12-29]. DOI: 10.1186/s12969-017-0209-6.
BHATT R R, GUPTA A, MAYER E A, et al. Chronic pain in children: structural and resting-state functional brain imaging within a developmental perspective[J]. Pediatr Res, 2020, 88(6): 840-849. DOI: 10.1038/s41390-019-0689-9.
ZHANG S, CHEN J M, KUANG L, et al. Association between abnormal default mode network activity and suicidality in depressed adolescents[J/OL]. BMC Psychiatry, 2016, 16(1): 337 [2022-12-29]. DOI: . DOI: 10.1186/s12888-016-1047-7.
WU F, TU Z, SUN J, et al. Abnormal Functional and Structural Connectivity of Amygdala-Prefrontal Circuit in First-Episode Adolescent Depression: A Combined fMRI and DTI Study[J/OL]. Front Psychiatry, 2019, 10: 983 [2022-12-29]. DOI: 10.3389/fpsyt.2019.00983.
BENDEZÚ J J, THAI M, WIGLESWORTH A, et al. Adolescent stress experience-expression-physiology correspondence: Links to depression, self-injurious thoughts and behaviors, and frontolimbic neural circuity[J/OL]. J Affect Disord, 2022, 300: 269-279 [2022-12-29]. DOI: 10.1016/j.jad.2021.12.098.

PREV Progress in the study of brain structural network in patients with autism spectrum disorder based on diffusion tensor imaging and graph theory
NEXT Application progress of functional magnetic resonance imaging in the treatment of sleep disorder with traditional Chinese and western medicine

Tel & Fax: +8610-67113815    E-mail: