Share this content in WeChat
Progress in the study of brain structural network in patients with autism spectrum disorder based on diffusion tensor imaging and graph theory
CHU Yao  CHEN Miaomiao  YU Hao  CHEN Yueqin 

Cite this article as: CHU Y, CHEN M M, YU H, et al. Progress in the study of brain structural network in patients with autism spectrum disorder based on diffusion tensor imaging and graph theory[J]. Chin J Magn Reson Imaging, 2023, 14(6): 99-102, 118. DOI:10.12015/issn.1674-8034.2023.06.017.

[Abstract] Autism spectrum disorder (ASD) is a category of neurodevelopmental disorder characterized by social and emotional interaction disorders as well as narrow interests and stereotyped behaviors, the underlying pathogenesis of which remains unclear. At present, the clinical diagnosis is mainly based on the observation of their behavior and symptoms, which has somewhat subjectivity, and it's difficult to diagnose the early atypical patients. Previous studies show that abnormalities in the brain structural network may be one of the pathogenesis of ASD, which can be quantitatively evaluated by diffusion tensor imaging (DTI) technology and graph theory analysis. In this paper, we mainly summarize the latest research progress on the brain structural network in ASD based on DTI and graph theory analysis. Studies have found abnormal changes of brain structure network in ASD, which includes global properties, nodal properties, rich-club organization, and lateralization, and these changes are closely related to growth and development and clinical symptoms. These findings provide a reference for further understanding the neuropathological mechanism of ASD and searching for the neuroimaging markers for early diagnosis.
[Keywords] autism spectrum disorder;magnetic resonance imaging;diffusion tensor imaging;brain structural network;graph theory

CHU Yao1   CHEN Miaomiao1   YU Hao2   CHEN Yueqin2*  

1 School of Clinical, Jining Medical University, Jining 272013, China

2 Department of Medical Imaging, the Affiliated Hospital of Jining Medical University, Jining 272029, China

Corresponding author: Chen YQ, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Construction Project of Quality Improvement Plan of Postgraduate Education in Shandong Province (No. SDYKC9213); 2022 Annual High-level Scientific Research Project Cultivation Plan of Jining Medical College (No. JYGC2022FKJ011).
Received  2022-10-24
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.06.017
Cite this article as: CHU Y, CHEN M M, YU H, et al. Progress in the study of brain structural network in patients with autism spectrum disorder based on diffusion tensor imaging and graph theory[J]. Chin J Magn Reson Imaging, 2023, 14(6): 99-102, 118. DOI:10.12015/issn.1674-8034.2023.06.017.

SAXENA R, BABADI M, NAMVARHAGHIGHI H, et al. Role of environmental factors and epigenetics in autism spectrum disorders[J]. Prog Mol Biol Transl Sci, 2020, 173: 35-60. DOI: 10.1016/bs.pmbts.2020.05.002.
YIN W, MOSTAFA S, WU F X. Diagnosis of Autism Spectrum Disorder Based on Functional Brain Networks with Deep Learning[J]. J Comput Biol, 2021, 28(2): 146-165. DOI: 10.1089/cmb.2020.0252.
LIU M W, LU H B, WANG H N, et al. Brain connectivity abnormity analysis in autism spectrum disorder based on magnetic resonance imaging[J]. Chin J Psychiatry, 2020, 53(4): 351-355. DOI: 10.3760/cma.j.cn113661-20190726-00248.
CAI Y, ZHAO J, WANG L, et al. Altered topological properties of white matter structural network in adults with autism spectrum disorder[J/OL]. Asian J Psychiatr, 2022, 75: 103211 [2022-10-24]. DOI: 10.1016/j.ajp.2022.103211.
LILOIA D, MANCUSO L, UDDIN L Q, et al. Gray matter abnormalities follow non-random patterns of co-alteration in autism: Meta-connectomic evidence[J/OL]. Neuroimage Clin, 2021, 30: 102583 [2022-10-24]. DOI: 10.1016/j.nicl.2021.102583.
KIM D, LEE J Y, JEONG B C, et al. Overconnectivity of the right Heschl's and inferior temporal gyrus correlates with symptom severity in preschoolers with autism spectrum disorder[J]. Autism Res, 2021, 14(11): 2314-2329. DOI: 10.1002/aur.2609.
YEH C H, JONES D K, LIANG X, et al. Mapping Structural Connectivity Using Diffusion MRI: Challenges and Opportunities[J]. J Magn Reson Imaging, 2021, 53(6): 1666-1682. DOI: 10.1002/jmri.27188.
HUANG S Y, WITZEL T, KEIL B, et al. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome[J/OL]. Neuroimage, 2021, 243: 118530 [2022-10-24]. DOI: 10.1016/j.neuroimage.2021.118530.
MHEICH A, WENDLING F, HASSAN M. Brain network similarity: methods and applications[J]. Network neuroscience (Cambridge, Mass), 2020, 4(3): 507-527. DOI: 10.1162/netn_a_00133.
LO C Y, HE Y, LIN C P. Graph theoretical analysis of human brain structural networks[J]. Rev Neurosci, 2011, 22(5): 551-563. DOI: 10.1515/RNS.2011.039.
XU M, CALHOUN V, JIANG R, et al. Brain imaging-based machine learning in autism spectrum disorder: methods and applications[J/OL]. J Neurosci Methods, 2021, 361: 109271 [2022-10-24]. DOI: 10.1016/j.jneumeth.2021.109271.
PAN Y X, JIANG J H, WANG M, et al. Advances in the study of complex brain network based on neuroimaging in Alzheimer's disease[J]. Int J Radiat Med Nucl Med, 2020, 44(1): 16-21. DOI: 10.3760/cma.j.issn.1673-4114.2020.01.005.
KAMAGATA K, ANDICA C, KATO A, et al. Diffusion Magnetic Resonance Imaging-Based Biomarkers for Neurodegenerative Diseases[J]. Int J Mol Sci, 2021, 22(10): 5216. DOI: 10.3390/ijms22105216.
WANG D, YAO Q, LIN X, et al. Disrupted topological properties of the structural brain network in patients with cerebellar infarction on different sides are associated with cognitive impairment[J/OL]. Front Neurol, 2022, 13: 982630 [2022-10-24]. DOI: 10.3389/fneur.2022.982630.
MERISAARI H, TUULARI J J, KARLSSON L, et al. Test-retest reliability of Diffusion Tensor Imaging metrics in neonates[J/OL]. Neuroimage, 2019, 197: 598-607. DOI: 10.1016/j.neuroimage.2019.04.067.
HU S, LI H, ZHANG Y Q, et al. Advances in neuroimaging studies of childhood autism[J]. Chin J Magn Reson Imaging, 2021, 12(11): 105-108. DOI: 10.12015/issn.1674-8034.2021.11.026.
Podwalski P, Szczygieł K, Tyburski E, et al. Magnetic resonance diffusion tensor imaging in psychiatry: a narrative review of its potential role in diagnosis[J]. Pharmacol Rep, 2021, 73(1): 43-56. DOI: 10.1007/s43440-020-00177-0.
YIN Y. Diffusion Tensor imaging study of white matter structure in preschool children with autism[D]. Guangzhou: Southern Medical University, 2021. DOI: 10.27003/d.cnki.gojyu.2021.000018.
LI C, LI Y, FU L, et al. The relationships between the topological properties of the whole-brain white matter network and the severity of autism spectrum disorder: A study from monozygotic twins[J]. Neuroscience, 2021, 465: 60-70. DOI: 10.1016/j.neuroscience.2021.04.003.
FATHIAN A, JAMALI Y, RAOUFY M R. The trend of disruption in the functional brain network topology of Alzheimer's disease[J]. Sci Rep, 2022, 12(1): 14998. DOI: 10.1038/s41598-022-18987-y.
ZHAO X Y, ZHANG W, ZHONG W J, et al. Predictive value of alterations of brain structural network topology in early-stage Parkinson's disease with mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(3): 12-17, 70. DOI: 10.12015/issn.1674-8034.2022.03.003.
VAN DEN HEUVEL M P, SPORNS O. Network hubs in the human brain[J]. Trends Cogn Sci, 2013, 17(12): 683-696. DOI: 10.1016/j.tics.2013.09.012.
KIM D J, MIN B K. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis[J]. Comput Struct Biotechnol J, 2020, 18: 1761-1773. DOI: 10.1016/j.csbj.2020.06.039.
RAO B, CHENG H, XU H, et al. Random Network and Non-rich-club Organization Tendency in Children With Non-syndromic Cleft Lip and Palate After Articulation Rehabilitation: A Diffusion Study[J/OL]. Front Neurol, 2022, 13: 790607 [2022-10-24]. DOI: 10.3389/fneur.2022.790607.
GRIFFA A, VAN DEN HEUVEL M P. Rich-club neurocircuitry: function, evolution, and vulnerability[J]. Dialogues Clin Neurosci, 2018, 20(2): 121-132. DOI: 10.31887/DCNS.2018.20.2/agriffa.
TULADHAR A M, LAWRENCE A, NORRIS D G, et al. Disruption of rich club organisation in cerebral small vessel disease[J]. Hum Brain Mapp, 2017, 38(4): 1751-1766. DOI: 10.1002/hbm.23479.
LI S J, WANG Y, QIAN L, et al. Alterations of White Matter Connectivity in Preschool Children with Autism Spectrum Disorder[J]. Radiology, 2018, 288(1): 209-217. DOI: 10.1148/radiol.2018170059.
FANG H, WU Q, LI Y, et al. Structural networks in children with autism spectrum disorder with regression: A graph theory study[J/OL]. Behav Brain Res, 2020, 378: 112262 [2022-10-24]. DOI: 10.1016/j.bbr.2019.112262.
OUYANG M, PENG Y, SOTARDI S, et al. Flattened Structural Network Changes and Association of Hyperconnectivity With Symptom Severity in 2-7-Year-Old Children With Autism[J/OL]. Front Neurosci, 2021, 15: 757838 [2022-10-24].
LI H, XUE Z, ELLMORE T M, et al. Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders[J]. Hum Brain Mapp, 2014, 35(2): 396-413. DOI: 10.1002/hbm.22185.
Li Y, Qian L, Xiao Y H, et al. The whole-brain white-matter structural network study of high-functioning autism spectrum disorder in children and adolescents[J]. J Clin Psychiatry, 2016, 26(2): 79-82.
RUDIE J D, BROWN J A, BECK-PANCER D, et al. Altered functional and structural brain network organization in autism[J]. Neuroimage Clin, 2012, 2: 79-94. DOI: 10.1016/j.nicl.2012.11.006.
QIAN L, LI Y, WANG Y, et al. Shared and Distinct Topologically Structural Connectivity Patterns in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder[J/OL]. Front Neurosci, 2021, 15: 664363 [2022-10-24]. DOI: 10.3389/fnins.2021.664363.
ROINE U, ROINE T, SALMI J, et al. Abnormal wiring of the connectome in adults with high-functioning autism spectrum disorder[J/OL]. Mol Autism, 2015, 6: 65 [2022-10-24]. DOI: 10.1186/s13229-015-0058-4.
WANG Z, CHEN L M, NÉGYESSY L, et al. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex[J]. Neuron, 2013, 78(6): 1116-1126. DOI: 10.1016/j.neuron.2013.04.023.
LEE M H, KIM D Y, CHUNG M K, et al. Topological Properties of the Structural Brain Network in Autism via ϵ-Neighbor Method[J]. IEEE Trans Biomed Eng, 2018, 65(10): 2323-2333. DOI: 10.1109/TBME.2018.2794259.
BANKER S M, GU X, SCHILLER D, et al. Hippocampal contributions to social and cognitive deficits in autism spectrum disorder[J]. Trends Neurosci, 2021, 44(10): 793-807. DOI: 10.1016/j.tins.2021.08.005.
QIAN L, WANG Y, CHU K, et al. Alterations in hub organization in the white matter structural network in toddlers with autism spectrum disorder: A 2-year follow-up study[J]. Autism Res, 2018, 11(9): 1218-1228. DOI: 10.1002/aur.1983.
TU W, MA Z, ZHANG N. Brain network reorganization after targeted attack at a hub region[J/OL]. Neuroimage, 2021, 237: 118219 [2022-10-24]. DOI: 10.1016/j.neuroimage.2021.118219.
CHIEN Y L, CHEN Y C, GAU S S. Altered cingulate structures and the associations with social awareness deficits and CNTNAP2 gene in autism spectrum disorder[J/OL]. Neuroimage Clin, 2021, 31: 102729 [2022-10-24]. DOI: 10.1016/j.nicl.2021.102729.
GUO B, CHEN J, CHEN Q, et al. Anterior cingulate cortex dysfunction underlies social deficits in Shank3 mutant mice[J]. Nat Neurosci, 2019, 22(8): 1223-1234. DOI: 10.1038/s41593-019-0445-9.
HERLIN B, NAVARRO V, DUPONT S. The temporal pole: From anatomy to function-A literature appraisal[J/OL]. J Chem Neuroanat, 2021, 113: 101925 [2022-10-24]. DOI: 10.1016/j.jchemneu.2021.101925.
YAN T, ZHUANG K, HE L, et al. Left temporal pole contributes to creative thinking via an individual semantic network[J/OL]. Psychophysiology, 2021, 58(8): e13841 [2022-10-24]. DOI: 10.1111/psyp.13841.
SEGUIN D, PAC S, WANG J, et al. Amygdala subnuclei development in adolescents with autism spectrum disorder: Association with social communication and repetitive behaviors[J/OL]. Brain Behav, 2021, 11(8): e2299 [2022-10-24]. DOI: 10.1002/brb3.2299.
HOLLANDER E, ANAGNOSTOU E, CHAPLIN W, et al. Striatal volume on magnetic resonance imaging and repetitive behaviors in autism[J]. Biol Psychiatry, 2005, 58(3): 226-232. DOI: 10.1016/j.biopsych.2005.03.040.
QIN B, WANG L, ZHANG Y, et al. Enhanced Topological Network Efficiency in Preschool Autism Spectrum Disorder: A Diffusion Tensor Imaging Study[J/OL]. Front Psychiatry, 2018, 9: 278 [2022-10-24]. DOI: 10.3389/fpsyt.2018.00278.

PREV Research progress of amide proton transfer magnetic resonance imaging in Parkinson,s disease
NEXT Research progress of brain function magnetic resonance imaging in patients with pain-depression comorbidity

Tel & Fax: +8610-67113815    E-mail: