Share this content in WeChat
The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases
FU Xiaona  WANG Jing 

Cite this article as: FU X N, WANG J. The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases[J]. Chin J Magn Reson Imaging, 2023, 14(6): 89-93. DOI:10.12015/issn.1674-8034.2023.06.015.

[Abstract] Neurological diseases are the important cause of disability and death worldwide, mainly including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and migraine. Numerous studies have demonstrated the occurrence of neurological diseases is closely related to the disruption of the gamma-aminobutynic acid (GABA) system. Proton magnetic resonance spectroscopy is an imaging technique for the non-invasive detection of metabolites in vivo, the emerging Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence achieves quantification of GABA levels in the brain using J-difference spectrum editing technology, providing clinicians with enriched imaging data for the diagnosis, treatment and prognostic management of diseases. This paper reviewed the principle of the MEGA-PRESS sequence and its research on GABA quantification in neurological diseases, in order to evaluate the clinical significance of GABA quantification in early detection and diagnosis of neurological diseases with this technique.
[Keywords] neurological diseases;Alzheimer's disease;Parkinson's disease;amyotrophic lateral sclerosis;multiple sclerosis;migraine;magnetic resonance imaging;proton magnetic resonance spectroscopy;Meshcher-Garwood point resolved spectroscopy;gamma-aminobutynic acid

FU Xiaona1, 2   WANG Jing1, 2*  

1 Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

2 Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China

Corresponding author: Wang J, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS General Program of Natural Science Foundation of Hubei Province (No. 2021CFB447).
Received  2023-01-15
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.06.015
Cite this article as: FU X N, WANG J. The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases[J]. Chin J Magn Reson Imaging, 2023, 14(6): 89-93. DOI:10.12015/issn.1674-8034.2023.06.015.

FEIGIN V L, VOS T, NICHOLS E, et al. The global burden of neurological disorders: translating evidence into policy[J]. Lancet Neurol, 2020, 19(3): 255-265. DOI: 10.1016/S1474-4422(19)30411-9.
FEIGIN V L, VOS T, ALAHDAB F, et al. Burden of Neurological Disorders Across the US From 1990-2017: A Global Burden of Disease Study[J]. JAMA Neurol, 2021, 78(2): 165-176. DOI: 10.1001/jamaneurol.2020.4152.
SOOD A, PREETI K, FERNANDES V, et al. Glia: A major player in glutamate-GABA dysregulation-mediated neurodegeneration[J]. J Neurosci Res, 2021, 99(12): 3148-3189. DOI: 10.1002/jnr.24977.
ZHANG W, XIONG B R, ZHANG L Q, et al. The Role of the GABAergic System in Diseases of the Central Nervous System[J]. Neuroscience, 2021, 470: 88-99. DOI: 10.1016/j.neuroscience.2021.06.037.
RADULOVIĆ S, SUNKARA S, MAURER C, et al. Digging Deeper: Advancements in Visualization of Inhibitory Synapses in Neurodegenerative Disorders[J]. Int J Mol Sci, 2021, 22(22): 12470. DOI: 10.3390/ijms222212470.
BAESHEN A, WYSS P O, HENNING A, et al. Test-Retest Reliability of the Brain Metabolites GABA and Glx With JPRESS, PRESS, and MEGA-PRESS MRS Sequences in vivo at 3T[J]. J Magn Reson Imaging, 2020, 51(4): 1181-1191. DOI: 10.1002/jmri.26921.
WEIS J, PERSSON J, FRICK A, et al. GABA quantification in human anterior cingulate cortex[J/OL]. PLoS One, 2021, 16(1): e240641 [2023-04-29]. DOI: 10.1371/journal.pone.0240641.
DUDA J M, MOSER A D, ZUO C S, et al. Repeatability and reliability of GABA measurements with magnetic resonance spectroscopy in healthy young adults[J]. Magn Reson Med, 2021, 85(5): 2359-2369. DOI: 10.1002/mrm.28587.
CHEN L G, LI J Q, WANG Q F. Implementation of human brain GABA measurements on a clinical 3 T magnetic resonance imaging system [J]. Chinese Journal of Magnetic Resonance, 2013, 30(3): 345-353. DOI: 10.3969/j.issn.1000-4556.2013.03.004.
HARRIS A D, SALEH M G, EDDEN R A. Edited (1) H magnetic resonance spectroscopy in vivo: Methods and metabolites[J]. Magn Reson Med, 2017, 77(4): 1377-1389. DOI: 10.1002/mrm.26619.
MULLINS P G, MCGONIGLE D J, O'GORMAN R L, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA[J]. Neuroimage, 2014, 86: 43-52. DOI: 10.1016/j.neuroimage.2012.12.004.
OELTZSCHNER G, WIJTENBURG S A, MIKKELSEN M, et al. Neurometabolites and associations with cognitive deficits in mild cognitive impairment: a magnetic resonance spectroscopy study at 7 Tesla[J]. Neurobiol Aging, 2019, 73: 211-218. DOI: 10.1016/j.neurobiolaging.2018.09.027.
BI D, WEN L, WU Z, et al. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease[J]. Alzheimers Dement, 2020, 16(9): 1312-1329. DOI: 10.1002/alz.12088.
JIMÉNEZ-BALADO J, EICH T S. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer's disease[J]. Semin Cell Dev Biol, 2021, 116: 146-159. DOI: 10.1016/j.semcdb.2021.01.005.
XU Y, ZHAO M, HAN Y, et al. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment[J]. Front Neurosci, 2020, 14: 660. DOI: 10.3389/fnins.2020.00660.
BAI X, EDDEN R A, GAO F, et al. Decreased γ-aminobutyric acid levels in the parietal region of patients with Alzheimer's disease[J]. J Magn Reson Imaging, 2015, 41(5): 1326-1331. DOI: 10.1002/jmri.24665.
RIESE F, GIETL A, ZÖLCH N, et al. Posterior cingulate γ-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype[J]. Neurobiol Aging, 2015, 36(1): 53-59. DOI: 10.1016/j.neurobiolaging.2014.07.030.
MURARI G, LIANG D R, ALI A, et al. Prefrontal GABA Levels Correlate with Memory in Older Adults at High Risk for Alzheimer's Disease[J/OL]. Cereb Cortex Commun, 2020, 1(1): a22 [2023-04-29]. DOI: 10.1093/texcom/tgaa022.
LI G, MA J, CUI S, et al. Parkinson's disease in China: a forty-year growing track of bedside work[J]. Transl Neurodegener, 2019, 8: 22. DOI: 10.1186/s40035-019-0162-z.
CHEN F Z, LIU J. Diagnosis of Parkinson's disease[J]. Chin J Neurol, 2021, 54(9): 957-962. DOI: 10.3760/cma.j.cn113694-20210531-00376.
MURUETA-GOYENA A, ANDIKOETXEA A, GÓMEZ-ESTEBAN J C, et al. Contribution of the GABAergic System to Non-Motor Manifestations in Premotor and Early Stages of Parkinson's Disease[J]. Front Pharmacol, 2019, 10: 1294. DOI: 10.3389/fphar.2019.01294.
ELMAKI E, GONG T, NKONIKA D M, et al. Examining alterations in GABA concentrations in the basal ganglia of patients with Parkinson's disease using MEGA-PRESS MRS[J]. Jpn J Radiol, 2018, 36(3): 194-199. DOI: 10.1007/s11604-017-0714-z.
GONG T, XIANG Y, SALEH M G, et al. Inhibitory motor dysfunction in parkinson's disease subtypes[J]. J Magn Reson Imaging, 2018, 47(6): 1610-1615. DOI: 10.1002/jmri.25865.
SONG Y, GONG T, SALEH M G, et al. Upper brainstem GABA levels in Parkinson's disease[J]. MAGMA, 2021, 34(5): 689-696. DOI: 10.1007/s10334-021-00910-7.
O'GORMAN T R, BAUMANN C R, BAUMANN-VOGEL H. Beyond Dopamine: GABA, Glutamate, and the Axial Symptoms of Parkinson Disease[J]. Front Neurol, 2018, 9: 806. DOI: 10.3389/fneur.2018.00806.
SONG Y, GONG T, XIANG Y, et al. Single-dose L-dopa increases upper brainstem GABA in Parkinson's disease: A preliminary study[J]. J Neurol Sci, 2021, 422: 117309. DOI: 10.1016/j.jns.2021.117309.
FELDMAN E L, GOUTMAN S A, PETRI S, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2022, 400(10360): 1363-1380. DOI: 10.1016/S0140-6736(22)01272-7.
GOUTMAN S A, HARDIMAN O, AL-CHALABI A, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis[J]. Lancet Neurol, 2022, 21(5): 480-493. DOI: 10.1016/S1474-4422(21)00465-8.
FOERSTER B R, CALLAGHAN B C, PETROU M, et al. Decreased motor cortex γ-aminobutyric acid in amyotrophic lateral sclerosis[J]. Neurology, 2012, 78(20): 1596-1600. DOI: 10.1212/WNL.0b013e3182563b57.
FOERSTER B R, POMPER M G, CALLAGHAN B C, et al. An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy[J]. JAMA Neurol, 2013, 70(8): 1009-1016. DOI: 10.1001/jamaneurol.2013.234.
MIAO X L, LIU J G. Advances of cortical damage in multiple sclerosis[J]. Chin J Neurol, 2022, 55(11): 1324-1329. DOI: 10.3760/cma.j.cn113694-20220311-00184.
OLEK M J. Multiple Sclerosis[J]. Ann Intern Med, 2021, 174(6): C81-C96. DOI: 10.7326/AITC202106150.
DE STEFANO N, GIORGIO A. GABA: a new imaging biomarker of neurodegeneration in multiple sclerosis?[J]. Brain, 2015, 138(Pt 9): 2467-2468. DOI: 10.1093/brain/awv213.
CAO J B, CUI L L, SUN W G, et al. Research progress of quantitative MRl radiomics in multiple sclerosis[J]. Chin J Magn Reson Imaging, 2021, 12(2): 113-116, 120. DOI: 10.12015/issn.1674-8034.2021.02.028.
CAO G, EDDEN R, GAO F, et al. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis[J]. Eur Radiol, 2018, 28(3): 1140-1148. DOI: 10.1007/s00330-017-5064-9.
KANTOROVÁ E, HNILICOVÁ P, BOGNER W, et al. Neurocognitive performance in relapsing-remitting multiple sclerosis patients is associated with metabolic abnormalities of the thalamus but not the hippocampus- GABA-edited 1H MRS study[J]. Neurol Res, 2022, 44(1): 57-64. DOI: 10.1080/01616412.2021.1956282.
NANTES J C, PROULX S, ZHONG J, et al. GABA and glutamate levels correlate with MTR and clinical disability: Insights from multiple sclerosis[J]. Neuroimage, 2017, 157: 705-715. DOI: 10.1016/j.neuroimage.2017.01.033.
ARM J, OELTZSCHNER G, AL-IEDANI O, et al. Altered in vivo brain GABA and glutamate levels are associated with multiple sclerosis central fatigue[J]. Eur J Radiol, 2021, 137: 109610. DOI: 10.1016/j.ejrad.2021.109610.
FERRARI M D, GOADSBY P J, BURSTEIN R, et al. Migraine[J]. Nat Rev Dis Primers, 2022, 8(1): 2. DOI: 10.1038/s41572-021-00328-4.
STOVNER L J, HAGEN K, LINDE M, et al. The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates[J]. J Headache Pain, 2022, 23(1): 34. DOI: 10.1186/s10194-022-01402-2.
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211. DOI: 10.1177/0333102417738202.
PEEK A L, LEAVER A M, FOSTER S, et al. Increase in ACC GABA+ levels correlate with decrease in migraine frequency, intensity and disability over time[J]. J Headache Pain, 2021, 22(1): 150. DOI: 10.1186/s10194-021-01352-1.
BATHEL A, SCHWEIZER L, STUDE P, et al. Increased thalamic glutamate/glutamine levels in migraineurs[J]. J Headache Pain, 2018, 19(1): 55. DOI: 10.1186/s10194-018-0885-8.
WU X, HAN S, YANG Y, et al. Decreased Brain GABA Levels in Patients with Migraine Without Aura: An Exploratory Proton Magnetic Resonance Spectroscopy Study[J]. Neuroscience, 2022, 488: 10-19. DOI: 10.1016/j.neuroscience.2022.02.010.
PEEK A L, LEAVER A M, FOSTER S, et al. Increased GABA+ in People With Migraine, Headache, and Pain Conditions- A Potential Marker of Pain[J]. J Pain, 2021, 22(12): 1631-1645. DOI: 10.1016/j.jpain.2021.06.005.
WANG W, ZHANG X, BAI X, et al. Gamma-aminobutyric acid and glutamate/glutamine levels in the dentate nucleus and periaqueductal gray with episodic and chronic migraine: a proton magnetic resonance spectroscopy study[J]. J Headache Pain, 2022, 23(1): 83. DOI: 10.1186/s10194-022-01452-6.
MANZHURTSEV A V, YAKOVLEV A N, BULANOV P A, et al. Macromolecular-Suppressed GABA-Edited MR Spectroscopy in the Posterior Cingulate Cortex of Patients With Acute Mild Traumatic Brain Injury[J]. J Magn Reson Imaging, 2023, 57(5): 1433-1442. DOI: 10.1002/jmri.28410.
BOGNER W, GAGOSKI B, HESS A T, et al. 3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI[J]. Neuroimage, 2014, 103: 290-302. DOI: 10.1016/j.neuroimage.2014.09.032.
SHUKLA D, MANDAL P K, TRIPATHI M, et al. Quantitation of in vivo brain glutathione conformers in cingulate cortex among age-matched control, MCI, and AD patients using MEGA-PRESS[J]. Hum Brain Mapp, 2020, 41(1): 194-217. DOI: 10.1002/hbm.24799.
COUGHLIN J M, YANG K, MARSMAN A, et al. A multimodal approach to studying the relationship between peripheral glutathione, brain glutamate, and cognition in health and in schizophrenia[J]. Mol Psychiatry, 2021, 26(7): 3502-3511. DOI: 10.1038/s41380-020-00901-5.
NGUYEN T B, MELKUS G, TACCONE M, et al. Preoperative Determination of Isocitrate Dehydrogenase Mutation in Gliomas Using Spectral Editing MRS: A Prospective Study[J]. J Magn Reson Imaging, 2021, 53(2): 416-426. DOI: 10.1002/jmri.27366.
BRANZOLI F, PONTOIZEAU C, TCHARA L, et al. Cystathionine as a marker for 1p/19q codeleted gliomas by in vivo magnetic resonance spectroscopy[J]. Neuro Oncol, 2019, 21(6): 765-774. DOI: 10.1093/neuonc/noz031.

PREV Advances in multimodal MRI research on chemotherapy-related cognitive impairment
NEXT Research progress of amide proton transfer magnetic resonance imaging in Parkinson,s disease

Tel & Fax: +8610-67113815    E-mail: