Share this content in WeChat
Advances in multimodal MRI research on chemotherapy-related cognitive impairment
CHEN Qingqing  SHEN Jing  ZHU Zhenyang  JIANG Bin  WU Jianlin 

Cite this article as: CHEN Q Q, SHEN J, ZHU Z Y, et al. Advances in multimodal MRI research on chemotherapy-related cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(6): 85-88. DOI:10.12015/issn.1674-8034.2023.06.014.

[Abstract] Chemotherapy-related cognitive impairment (CRCI) refers to the brain cognitive dysfunction caused by non-central nervous system tumor chemotherapy, which seriously affects the quality of life of patients. With the booming development of MRI technology, structural and functional MRI has become an effective method to explore the neural mechanisms of CRCI and has made continuous progress. Radiomics and artificial intelligence (AI) have also gradually developed and improved in the analysis of CRCI brain imaging data, yielding significant achievements. This paper reviews the research progress in the multimodal MRI field of CRCI and explores its clinical value. The aim is to provide a new perspective and new strategies for interpreting the detailed neuropathological mechanisms of CRCI using MRI.
[Keywords] chemotherapy-related cognitive impairment;magnetic resonance imaging;structural magnetic resonance imaging;functional magnetic resonance imaging;multimodal magnetic resonance imaging;radiomics;artificial intelligence

CHEN Qingqing1   SHEN Jing1   ZHU Zhenyang2   JIANG Bin3   WU Jianlin1*  

1 Department of Radiology, the Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

2 Department of Radiology, Sichuan Province Panzhihua Central Hospital, Panzhihua 617067, China

3 Department of Clinical Laboratory, the Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China

Corresponding author: Wu JL, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071911).
Received  2022-07-20
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.06.014
Cite this article as: CHEN Q Q, SHEN J, ZHU Z Y, et al. Advances in multimodal MRI research on chemotherapy-related cognitive impairment[J]. Chin J Magn Reson Imaging, 2023, 14(6): 85-88. DOI:10.12015/issn.1674-8034.2023.06.014.

ONGNOK B, CHATTIPAKORN N, CHATTIPAKORN S C. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions[J/OL]. Exp Neurol, 2020, 324: 113118 [2022-07-19]. DOI: 10.1016/j.expneurol.2019.113118.
WANG L, ZHOU F Q. Research progress on neuroimaging biomarkers of chemotherapy-related cognitive impairment in breast cancer[J]. Chin J Magn Reson Imaging, 2022, 13(2): 112-115. DOI: 10.12015/issn.1674-8034.2022.02.027.
LANGE M, LICAJ I, CLARISSE B, et al. Cognitive complaints in cancer survivors and expectations for support: Results from a web-based survey[J]. Cancer Med, 2019, 8(5): 2654-2663. DOI: 10.1002/cam4.2069.
HATCHARD T, PENTA S, MIODUZSEWSKI O, et al. Increased gray matter following mindfulness-based stress reduction in breast cancer survivors with chronic neuropathic pain: preliminary evidence using voxel-based morphometry[J]. Acta Neurol Belg, 2022, 122(3): 735-743. DOI: 10.1007/s13760-022-01877-5.
DIJKSHOORN A B C, VAN STRALEN H E, SLOOTS M, et al. Prevalence of cognitive impairment and change in patients with breast cancer: A systematic review of longitudinal studies[J]. Psychooncology, 2021, 30(5): 635-648. DOI: 10.1002/pon.5623.
SALES M V C, SUEMOTO C K, APOLINARIO D, et al. Effects of Adjuvant Chemotherapy on Cognitive Function of Patients With Early-stage Colorectal Cancer[J]. Clin Colorectal Cancer, 2019, 18(1): 19-27. DOI: 10.1016/j.clcc.2018.09.002.
MENTZELOPOULOS A, KARANASIOU I, PAPATHANASIOU M, et al. A Comparative Analysis of White Matter Structural Networks on SCLC Patients After Chemotherapy[J]. Brain Topogr, 2022, 35(3): 352-362. DOI: 10.1007/s10548-022-00892-2.
WHITFORD H S, KALINOWSKI P, SCHEMBRI A, et al. The impact of chemotherapy on cognitive function: a multicentre prospective cohort study in testicular cancer[J]. Support Care Cancer, 2020, 28(7): 3081-3091. DOI: 10.1007/s00520-019-05095-3.
EIDE S, FENG Z P. Doxorubicin chemotherapy-induced "chemo-brain": Meta-analysis[J/OL]. Eur J Pharmacol, 2020, 881: 173078 [2022-07-19]. DOI: 10.1016/j.ejphar.2020.173078.
ORSZÁGHOVÁ Z, MEGO M, CHOVANEC M. Long-Term Cognitive Dysfunction in Cancer Survivors[J/OL]. Front Mol Biosci, 2021, 8: 770413 [2022-07-19]. DOI: 10.3389/fmolb.2021.770413.
NIU R, DU M, REN J, et al. Chemotherapy-induced grey matter abnormalities in cancer survivors: a voxel-wise neuroimaging meta-analysis[J]. Brain Imaging Behav, 2021, 15(4): 2215-2227. DOI: 10.1007/s11682-020-00402-7.
SCHROYEN G, VISSERS J, SMEETS A, et al. Blood and neuroimaging biomarkers of cognitive sequelae in breast cancer patients throughout chemotherapy: A systematic review[J/OL]. Transl Oncol, 2022, 16: 101297 [2022-07-19]. DOI: 10.1016/j.tranon.2021.101297.
ZHENG F, LIU Y, YUAN Z, et al. Age-related changes in cortical and subcortical structures of healthy adult brains: A surface-based morphometry study[J]. J Magn Reson Imaging, 2019, 49(1): 152-163. DOI: 10.1002/jmri.26037.
HENNEGHAN A, RAO V, HARRISON R A, et al. Cortical Brain Age from Pre-treatment to Post-chemotherapy in Patients with Breast Cancer[J]. Neurotox Res, 2020, 37(4): 788-799. DOI: 10.1007/s12640-019-00158-z.
MCDONALD B C. Structural Neuroimaging Findings Related to Adult Non-CNS Cancer and Treatment: Review, Integration, and Implications for Treatment of Cognitive Dysfunction[J]. Neurotherapeutics, 2021, 18(2): 792-810. DOI: 10.1007/s13311-021-01096-5.
ZHANG Y, CHEN Y C, HU L, et al. Chemotherapy-induced functional changes of the default mode network in patients with lung cancer[J]. Brain Imaging Behav, 2020, 14(3): 847-856. DOI: 10.1007/s11682-018-0030-y.
TONG T, LU H, ZONG J, et al. Chemotherapy-related cognitive impairment in patients with breast cancer based on MRS and DTI analysis[J]. Breast Cancer, 2020, 27(5): 893-902. DOI: 10.1007/s12282-020-01094-z.
LI T Y, CHEN V C, YEH D C, et al. Investigation of chemotherapy-induced brain structural alterations in breast cancer patients with generalized q-sampling MRI and graph theoretical analysis[J/OL]. BMC Cancer, 2018, 18(1): 1211 [2022-07-19]. DOI: 10.1186/s12885-018-5113-z.
GIBSON E M, NAGARAJA S, OCAMPO A, et al. Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment[J/OL]. Cell, 2019, 176(1-2): 43-55.e13 [2022-07-19]. DOI: 10.1016/j.cell.2018.10.049.
MENNING S, DE RUITER M B, VELTMAN D J, et al. Changes in brain white matter integrity after systemic treatment for breast cancer: a prospective longitudinal study[J]. Brain Imaging Behav, 2018, 12(2): 324-334. DOI: 10.1007/s11682-017-9695-x.
MZAYEK Y, DE RUITER M B, OLDENBURG H S A, et al. Measuring decline in white matter integrity after systemic treatment for breast cancer: omitting skeletonization enhances sensitivity[J]. Brain Imaging Behav, 2021, 15(3): 1191-1200. DOI: 10.1007/s11682-020-00319-1.
SANTHANAM P, WILSON S H, OAKES T R, et al. Effects of mild traumatic brain injury and post-traumatic stress disorder on resting-state default mode network connectivity[J]. Brain Res, 2019, 1711: 77-82. DOI: 10.1016/j.brainres.2019.01.015.
NGUYEN L D, EHRLICH B E. Cellular mechanisms and treatments for chemobrain: insight from aging and neurodegenerative diseases[J/OL]. EMBO Mol Med, 2020, 12(6): e12075 [2022-07-19]. DOI: 10.15252/emmm.202012075.
DEPREZ S, KESLER S R, SAYKIN A J, et al. International Cognition and Cancer Task Force Recommendations for Neuroimaging Methods in the Study of Cognitive Impairment in Non-CNS Cancer Patients[J]. J Natl Cancer Inst, 2018, 110(3): 223-231. DOI: 10.1093/jnci/djx285.
Zheng F, Cao P, Zhou J, et al. Study on Neurologic and Cognitive Dysfunction in Breast Cancer Patients undergoing Chemotherapy with RS fMRI Imaging[J/OL]. World Neurosurg, 2020 [2022-07-19]. DOI: 10.1016/j.wneu.2020.10.088.
PHILLIPS N S, RAO V, KMETZ L, et al. Changes in Brain Functional and Effective Connectivity After Treatment for Breast Cancer and Implications for Intervention Targets[J]. Brain Connect, 2022, 12(4): 385-397. DOI: 10.1089/brain.2021.0049.
KARDAN O, REUTER-LORENZ P A, PELTIER S, et al. Brain connectivity tracks effects of chemotherapy separately from behavioral measures[J/OL]. Neuroimage Clin, 2019, 21: 101654 [2022-07-19]. DOI: 10.1016/j.nicl.2019.101654.
SOUSA H, ALMEIDA S, BESSA J, et al. The Developmental Trajectory of Cancer-Related Cognitive Impairment in Breast Cancer Patients: A Systematic Review of Longitudinal Neuroimaging Studies[J]. Neuropsychol Rev, 2020, 30(3): 287-309. DOI: 10.1007/s11065-020-09441-9.
STEFANCIN P, CAHANEY C, PARKER R I, et al. Neural correlates of working memory function in pediatric cancer survivors treated with chemotherapy: an fMRI study[J/OL]. NMR Biomed, 2020, 33(6): e4296 [2022-07-19]. DOI: 10.1002/nbm.4296.
APPLE A C, SCHROEDER M P, RYALS A J, et al. Hippocampal functional connectivity is related to self-reported cognitive concerns in breast cancer patients undergoing adjuvant therapy[J]. NeuroImage Clinical, 2018, 20: 110-118. DOI: 10.1016/j.nicl.2018.07.010.
VARDY J L, STOUTEN-KEMPERMAN M M, POND G, et al. A mechanistic cohort study evaluating cognitive impairment in women treated for breast cancer[J]. Brain Imaging Behav, 2019, 13(1): 15-26. DOI: 10.1007/s11682-017-9728-5.
STOUTEN-KEMPERMAN M M, DE RUITER M B, BOOGERD W, et al. Brain Hyperconnectivity>10 Years After Cisplatin-Based Chemotherapy for Testicular Cancer[J]. Brain Connect, 2018, 8(7): 398-406. DOI: 10.1089/brain.2017.0569.
JUNG M S, ZHANG M, ASKREN M K, et al. Cognitive dysfunction and symptom burden in women treated for breast cancer: a prospective behavioral and fMRI analysis[J]. Brain Imaging Behav, 2017, 11(1): 86-97. DOI: 10.1007/s11682-016-9507-8.
SHIROISHI M S, GUPTA V, BIGJAHAN B, et al. Brain cortical structural differences between non-central nervous system cancer patients treated with and without chemotherapy compared to non-cancer controls: a cross-sectional pilot MRI study using clinically-indicated scans[J/OL]. Proc SPIE Int Soc Opt Eng, 2017, 10572 [2022-07-19]. DOI: 10.1117/12.2285971.
BAI X, ZHENG J, ZHANG B, et al. Cognitive Dysfunction and Neurophysiologic Mechanism of Breast Cancer Patients Undergoing Chemotherapy Based on Resting State Functional Magnetic Resonance Imaging[J]. World Neurosurg, 2021, 149: 406-412. DOI: 10.1016/j.wneu.2020.10.066.
KESLER S R, RAO A, BLAYNEY D W, et al. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning[J/OL]. Front Hum Neurosci, 2017, 11: 555 [2022-07-19]. DOI: 10.3389/fnhum.2017.00555.
FENG Q, DING Z. MRI Radiomics Classification and Prediction in Alzheimer's Disease and Mild Cognitive Impairment: A Review[J]. Curr Alzheimer Res, 2020, 17(3): 297-309. DOI: 10.2174/1567205017666200303105016.
KESLER S R, WEFEL J S, HOSSEINI S M, et al. Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls[J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11600-11605. DOI: 10.1073/pnas.1214551110.
HOSSEINI S M, KESLER S R. Multivariate pattern analysis of FMRI in breast cancer survivors and healthy women[J]. J Int Neuropsychol Soc, 2014, 20(4): 391-401. DOI: 10.1017/s1355617713001173.
KESLER S R, PETERSEN M L, RAO V, et al. Functional connectome biotypes of chemotherapy-related cognitive impairment[J]. J Cancer Surviv, 2020, 14(4): 483-493. DOI: 10.1007/s11764-020-00863-1.
WANG Y F, MAO L, CHEN H J, et al. Predicting cognitive impairment in chronic kidney disease patients using structural and functional brain network: An application study of artificial intelligence[J/OL]. Prog Neuropsychopharmacol Biol Psychiatry, 2023, 122: 110677 [2022-07-19]. DOI: 10.1016/j.pnpbp.2022.110677.

PREV Complete hydatidiform mole and coexisting fetus with pulmonary metastases: One case report
NEXT The clinical research progress of gamma-aminobutynic acid quantification based on MEGA-PRESS in neurological diseases

Tel & Fax: +8610-67113815    E-mail: