Share this content in WeChat
Technical Article
The visualization of trigeminal nerve and its adjacent vessels using ultra-high field 7 T MRI
BI Jingfeng  LIU Xinyao  ZHANG Zhe  JING Jing  SUI Binbin 

Cite this article as: BI J F, LIU X Y, ZHANG Z, et al. The visualization of trigeminal nerve and its adjacent vessels using ultra-high field 7 T MRI[J]. Chin J Magn Reson Imaging, 2023, 14(6): 66-70, 84. DOI:10.12015/issn.1674-8034.2023.06.010.

[Abstract] Objective To explore the visualization of trigeminal nerve and its adjacent vessels using 7 T MRI three dimensional sequences.Materials and Methods Prospective collection of 24 patients (48 trigeminal nerves in all) from May 2022 to January 2023, who underwent 7 T ultra-high-field cranial MRI. All patients were scanned with three dimensional time of flight magnetic resonance angiography (3D TOF MRA) sequence , three dimensional T1-weighted magnetization prepared 2 rapid gradient echo (3D T1-MP2RAGE) sequence and three dimensional T1-weighted magnetization prepared rapid gradient echo (3D T1-MPRAGE) sequence. The original image data was assigned a score independently by two radiologists. The relationship of trigeminal nerve and its adjacent vessels with 3D T1-MPRAGE images and images acquired at the second inversion time of 3D T1-MP2RAGE (3D T1-MP2RAGE GRETI2) were analyzed. Signal to noise ratio (SNR) of 3D T1-MPRAGE images and 3D T1-MP2RAGE GRETI2 images were compared. Kappa-test was used to compare the consistency of the scores. χ2 test was used to compare the relationship results of trigeminal nerve and its adjacent vessels between 3D T1-MPRAGE images and 3D T1-MP2RAGE GRETI2 images. A Paired t-test was used to compare SNR between 3D T1-MPRAGE images and 3D T1-MP2RAGE GRETI2 images.Results The Kappa values of the three groups of images were 0.846, 1.000 and 0.846, with good consistency. There was no difference between the two groups of sequences in displaying the relationship of trigeminal nerve and its adjacent vessels (χ2=0.174, P>0.05). SNR of 3D T1-MP2RAGE GRETI2 sequence was higher than that of 3D T1-MPRAGE, (62.12±33.94) and (35.52±15.32) respectively. The difference was statistically significant (P<0.001).Conclusions In 7 T ultra-high-field magnetic resonance brain imaging, 3D T1-MP2RAGE GRETI2 images are better than 3D T1-MPRAGE images in displaying trigeminal nerve and its adjacent vessels, which have better SNR, and the adjacent vessels are easy to be observed for their bright signals.
[Keywords] trigeminal nerve;magnetic resonance angiography;magnetic resonance imaging;signal to noise ratio

BI Jingfeng   LIU Xinyao   ZHANG Zhe   JING Jing   SUI Binbin*  

China National Clinical Research Center for Neurological Disease Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China

Corresponding author: Sui BB, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Beijing (No. 7212028).
Received  2023-02-01
Accepted  2023-05-05
DOI: 10.12015/issn.1674-8034.2023.06.010
Cite this article as: BI J F, LIU X Y, ZHANG Z, et al. The visualization of trigeminal nerve and its adjacent vessels using ultra-high field 7 T MRI[J]. Chin J Magn Reson Imaging, 2023, 14(6): 66-70, 84. DOI:10.12015/issn.1674-8034.2023.06.010.

ZENG C, LI Y H, YAN W, et al. A study of the correlation between the compression location and the painful region in classical trigeminal neuralgia by MRN[J]. Chin J Magn Reson Imaging, 2022, 13(7): 103-106. DOI: 10.12015/issn.1674-8034.2022.07.018.
LIU T S, LIU M, ZHOU C, et al. The relationship between the abnormal trigeminal root structure and the changes of local brain activity in classic trigeminal neuralgia patients[J]. Chin J Magn Reson Imaging, 2020, 11(10): 848-852, 895. DOI: 10.12015/issn.1674-8034.2020.10.003.
WANG B, ZHANG Y, MING Y, et al. A segmentation-independent volume rendering visualization method might reduce redundant explorations and post-surgical complications of microvascular decompression[J]. Eur Radiol, 2020, 30(7): 3823-3833. DOI: 10.1007/s00330-020-06715-x.
TONA K D, VAN OSCH M J P, NIEUWENHUIS S, et al. Quantifying the contrast of the human locus coeruleus in vivo at 7 Tesla MRI[J/OL]. PLoS One, 2019, 14(2): e0209842 [2023-01-05]. DOI: 10.1371/journal.pone.0209842.
JEON P, MACKINLEY M, THÉBERGE J, et al. The trajectory of putative astroglial dysfunction in first episode schizophrenia: a longitudinal 7-Tesla MRS study[J/OL]. Sci Rep, 2021, 11(1): 22333 [2023-01-06]. DOI: 10.1038/s41598-021-01773-7.
CHAI Y, LI L, WANG Y, et al. Magnetization transfer weighted EPI facilitates cortical depth determination in native fMRI space[J/OL]. Neuroimage, 2021, 242: 118455 [2023-01-06]. DOI: 10.1016/j.neuroimage.2021.118455.
CERNASOV P, WALSH E C, KINARD J L, et al. Multilevel growth curve analyses of behavioral activation for anhedonia (BATA) and mindfulness-based cognitive therapy effects on anhedonia and resting-state functional connectivity: Interim results of a randomized trial[J]. J Affect Disord, 2021, 292: 161-171. DOI: 10.1016/j.jad.2021.05.054.
GROCHOWSKI C, STAŚKIEWICZ G. Ultra high field TOF-MRA: A method to visualize small cerebral vessels. 7 T TOF-MRA sequence parameters on different MRI scanners-Literature review[J]. Neurol Neurochir Pol, 2017, 51(5): 411-418. DOI: 10.1016/j.pjnns.2017.06.011.
LIU J, CHEN F, WANG X Y, et al. A comparative analysis framework of 3T and 7 T TOF-MRA based onautomatecerebrovascular segmentation[J/OL]. Comput Med Imaging Graph, 2021, 89: 101830 [2023-01-07]. DOI: 10.1016/j.compmedimag.2020.101830.
KONG Q L, ZHANG Z H, YANG Q, et al. 7 T TOF-MRA shows modulated orifices of lenticulostriate arteries associated with atherosclerotic plaques in patients with lacunar infarcts[J]. Eur J Radiol, 2019, 118: 271-276. DOI: 10.1016/j.ejrad.2019.07.032.
SU J, NI W, YANG B F, et al. Preliminary Study on the Application of Ultrahigh Field Magnetic Resonance in Moyamoya Disease[J/OL]. Oxid Med Cell Longev, 2021, 2021: 5653948 [2023-01-08]. DOI: 10.1155/2021/5653948.
KUFNER A, KHALIL A A, GALINOVIC I, et al. Magnetic resonance imaging-based changes in vascular morphology and cerebral perfusion in subacute ischemic stroke[J]. J Cereb Blood Flow Metab, 2021, 41(10): 2617-2627. DOI: 10.1177/0271678X211010071.
LUO S J, DAI T J, HAN Z K, et al. Clinical application of MRI sequences in primary trigeminal neuralgia[J]. Journal of Imaging Research and Medical Applications, 2021, 5(17): 175-176. DOI: 10.3969/j.issn.2096-3807.2021.17.085.
CHEN J M, LIANG Y G, YE P Y, et al. Research on Automatic Measurement of SNR and Uniformity in MRI Quality Control Test[J]. China Medical Devices, 2022, 37(8): 160-163, 172. DOI: 10.3969/j.issn.1674-1633.2022.08.033.
HUANG Y, CHAI X, XIAO C Y, et al. Diagnostic value of three-dimensional fast imaging employing steady-state acquisition with phase cycling and three-dimensional time-of-flight MRA in patients with primary trigeminal neuralgia[J]. Journal of Clinical Neurology, 2020, 33(5): 362-366. DOI: 10.3969/j.issn.1004-1648.2020.05.011.
ZHOU X J, GUO Y M, CHEN L J. The comparative study of showing the responsible blood vessels for neurovascular compression in trigeminal neuralgia by 3D-FIESTA-C and 3D-TOF-MRA[J]. J Pract Radiol, 2016, 32(5): 667-670. DOI: 10.3969/j.issn.1002-1671.2016.05.002.
MI L, SONG Y L, CHEN H, et al. Preliminary study of vascular compression and morphological characteristics of trigeminal nerve bridge forebay section by 3D-TOF MRA combined with 3D-FIESTA[J]. J Pract Radiol, 2018, 34(8): 1160-1163, 1171. DOI: 10.3969/j.issn.1002-1671.2018.08.002.
ROONEY W D, JOHNSON G, LI X, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo[J]. Magn Reson Med, 2007, 57(2): 308-318. DOI: 10.1002/mrm.21122.
RODGERS C T, PIECHNIK S K, DELABARRE L J, et al. Inversion recovery at 7 T in the human myocardium: measurement of T(1), inversion efficiency and B(1) (+)[J]. Magn Reson Med, 2013, 70(4): 1038-1046. DOI: 10.1002/mrm.24548.
SHIMIZU M, IMAI H, KAGOSHIMA K, et al. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5-T and 3.0-T magnetic resonance imaging[J]. World Neurosurg, 2013, 80(3-4): 378-385. DOI: 10.1016/j.wneu.2012.05.030.
STEFAN H, MARIA R, STEFANESCU D, et al. Effects of image homogeneity on stenosis visualization at 7 T in a coronary artery phantom study: With and without B1-shimming and parallel transmission[J/OL]. PLoS One, 2022, 17(6): e0270689 [2023-01-08]. DOI: 10.1371/journal.pone.0270689.
TOMASI S O, UMANA G E, SCALIA G, et al. Importance of Veins for Neurosurgery as Landmarks Against Brain Shifting Phenomenon: An Anatomical and 3D-MPRAGE MR Reconstruction of Superficial Cortical Veins[J/OL]. Front Neuroanat, 2020, 14: 596167 [2023-01-09]. DOI: 10.3389/fnana.2020.596167.
SUN Y L, DING S, HANJIAERBIEKE K K, et al. T1WI-3D-MPRAGE Imaging Study on the Volume of Hippocampus and Amygdala in Refractory Epilepsy[J]. Chin J CT & MRI, 2022, (2): 5-7, 17. DOI: 10.3969/j.issn.1672-5131.2022.02.002.
GU X, XU F, ZHANG L L, et al. A clinical study of amygdala volume changes in medial temporal lobe epilepsy patients[J]. Chin J Magn Reson Imaging, 2022, 13(6): 36-39. DOI: 10.12015/issn.1674-8034.2022.06.007.
NAIR G, ABSINTA M. Optimized T1-MPRAGE sequence for better visualization of spinal cord multiple sclerosis lesions at 3T[J]. AJNR Am J Neuroradiol, 2013, 34(11): 2215-2222. DOI: 10.3174/ajnr.A3637.
NELSON F, POONAWALLA A, DATTA S. Is 3D MPRAGE better than the combination DIR/PSIR for cortical lesion detection at 3T MRI?[J]. Mult Scler Relat Disord, 2014, 3(2): 253-257. DOI: 10.1016/j.msard.2013.10.002.
Barch D M, Tillman R, Kelly D, et al. Hippocampal volume and depression among young children[J]. Psychiatry Res Neuroimaging, 2019, 288: 21-28. DOI: 10.1016/j.pscychresns.2019.04012.
MARQUES J P, KOBER T, KRUEGER G, et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field[J]. Neuroimage, 2010, 49(2): 1271-1281. DOI: 10.1016/j.neuroimage.2009.10.002.
OLIVEIRA Í A F, ROOS T, DUMOULIN S O, et al. Can 7 T MPRAGE match MP2RAGE for gray-white matter contrast?[J/OL]. Neuroimage, 2021, 240: 118384 [2023-01-09]. DOI: 10.1016/j.neuroimage.2021.118384.
LA ROSA F, YU T, BARQUERO G, et al. MPRAGE to MP2RAGE UNI translation via generative adversarial network improves the automatic tissue and lesion segmentation in multiple sclerosis patients[J/OL]. Comput Biol Med, 2021, 132: 104297. [2023-01-11]. DOI: 10.1016/j.compbiomed.2021.104297.
DATTA R, BACCHUS M K, KUMAR D, et al. Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla[J]. Magn Reson Med, 2021, 85(5): 2781-2790. DOI: 10.1002/mrm.28608.
DEMERATH T, KALLER C P, HEERS M, et al. Fully automated detection of focal cortical dysplasia: Comparison of MPRAGE and MP2RAGE sequences[J]. Epilepsia, 2022, 63(1): 75-85. DOI: 10.1111/epi.17127.

PREV MRS combined with subtraction technique in the prediction of high grade glioma radiomics grading
NEXT The Value of compressed sensing 3D MRI sagittal T2 weighted imaging-spectral attenuated in-version recovery to display the anterior talofibular ligament

Tel & Fax: +8610-67113815    E-mail: