Share this content in WeChat
Clinical Article
MR imaging evaluation of heavy-ion therapy for hepatocellular carcinoma
ZHAO Zhiping  GUAN Zhaoyu  WANG Jianhua  ZHANG Yanshan  WANG Huijuan 

Cite this article as: ZHAO Z P, GUAN Z Y, WANG J H, et al. MR imaging evaluation of heavy-ion therapy for hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(6): 32-38. DOI:10.12015/issn.1674-8034.2023.06.005.

[Abstract] Objective To explore the value of MRI in the efficacy evaluation of heavy-ion radiotherapy (HIT) for hepatocellular carcinoma (HCC).Materials and Methods A retrospective analysis of 25 cases of HCC examed by MRI, compare the axial area, volume and maximum diameter, apparent diffusion coefficient (ADC), T1WI signal enhancement rate ratio (SER) of the HCC before treatment with the data which after 3-6 months treatment. To evaluate the correlation between the imaging changes and the alpha-fetal protein (AFP) changes. Wilcoxon rank-sum test was used to compare changes in AFP, morphological parameters (maximum length, area and volume) and MRI parameters (ADC and SER); Spearman correlation was used to analyze the correlation between the SER of arterial phase (A phase), hepatic portal venous phase (H phase) and venous phase (V phase) and tumor morphology, ADC and tumor marker AFP.Results The results showed that after HIT, HCC morphology, AFP decreased, and ADC value was significantly increased (P<0.05). Correlation analysis showed that SER of A phase was slightly positively correlated with tumor morphology, and the correlation coefficient with the maximum length and volume of tumor was r=0.29 and r=0.27 (P<0.05), respectively, SER of H phase was also slightly positively correlated with tumor morphology, and the correlation coefficients with area and volume were r=0.28 and r=0.31, respectively (P<0.05), ADC value was negatively correlated with AFP value of tumor marker, and the correlation coefficient was r=-0.40 (P<0.05). The correlation between AFP and tumor size and SER showed that AFP was positively correlated with tumor diameter and volume, r=0.69 and 0.64, respectively (P<0.05). At the same time, AFP was positively correlated with the enhancement rate of A phase, r=0.59 (P<0.05), but not with the enhancement rate of H phase and phase V (P>0.05).Conclusions HCC changes significantly before and after HIT, and has a good correlation with AFP, with the decrease of AFP, HCC tumor size and SER are decreased which compared with before treatment, while the ADC value is higher than before treatment. MRI can evaluate the efficacy of HIT in HCC effectively.
[Keywords] hepatocellular carcinoma;heavy-ion radiotherapy;efficacy evaluation;diffusion weighted imaging;magnetic resonance imaging

ZHAO Zhiping   GUAN Zhaoyu*   WANG Jianhua   ZHANG Yanshan   WANG Huijuan  

Department of Radiology, Gansu Wuwei Tumor Hospital, Wuwei 733000, China

Corresponding author: Guan ZY, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Key R&D Program Project of Gansu Province (No. 20YF8FH155).
Received  2022-12-05
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.06.005
Cite this article as: ZHAO Z P, GUAN Z Y, WANG J H, et al. MR imaging evaluation of heavy-ion therapy for hepatocellular carcinoma[J]. Chin J Magn Reson Imaging, 2023, 14(6): 32-38. DOI:10.12015/issn.1674-8034.2023.06.005.

QAYUM K, KAR I, RASHID U, et al. Effects of surgery, chemotherapy, and radiation on hepatocellular carcinoma patients: a SEER-based study[J/OL]. Ann Med Surg (Lond), 2021, 69: 102782 [2023-03-20]. DOI: 10.1016/j.amsu.2021.102782.
ZHENG R S, QU C F, ZHANG S W, et al. Liver cancer incidence and mortality in China: temporal trends and projections to 2030[J]. Chin J Cancer Res, 2018, 30(6): 571-579. DOI: 10.21147/j.issn.1000-9604.2018.06.01.
RAO C V, ASCH A S, YAMADA H Y. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer[J]. Carcinogenesis, 2017, 38(1): 2-11. DOI: 10.1093/carcin/bgw118.
WANG H L, MO D C, ZHONG J H, et al. Systematic review of treatment strategy for recurrent hepatocellular carcinoma: salvage liver transplantation or curative locoregional therapy[J/OL]. Medicine (Baltimore), 2019, 98(8): e14498 [2022-08-24]. DOI: 10.1097/MD.0000000000014498.
SUGAWARA Y. Living-donor liver transplantation for patients with hepatocellular carcinoma in Japan: current situations and challenge[J/OL]. Hepatobiliary Pancreat Dis Int, 2020, 19(1): 11-12. [2022-11-28]. DOI: 10.1016/j.hbpd.2019.11.009.
ZHANG Y X, PEI Y L, CHEN X P, et al. Treatment for solitary hepatocellular carcinoma ranging from 2 and 5 cm: is the curative effect of no-touch multibipolar radiofrequency ablation comparable to that of surgical resection?[J]. J Hepatol, 2019, 70(3): 575-576. DOI: 10.1016/j.jhep.2018.10.039.
FAN Y H, LIU M. The potential role of SEPT6 in liver fibrosis and human hepatocellular carcinoma[J]. Arch Med Res, 2020, 1(1): 22-25. DOI: 10.33696/Gastroenterology.1.005.
XU Z T, XIE H Y, ZHOU L, et al. The combination strategy of transarterial chemoembolization and radiofrequency ablation or microwave ablation against hepatocellular carcinoma[J/OL]. Anal Cell Pathol (Amst), 2019, 2019: 8619096 [2022-08-17]. DOI: 10.1155/2019/8619096.
General Office of National Health Commission. Standardization for diagnosis and treatment of hepatocellular carcinoma (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
GALLE P R, TOVOLI F, FOERSTER F, et al. The treatment of intermediate stage tumours beyond TACE: from surgery to systemic therapy[J]. J Hepatol, 2017, 67(1): 173-183. DOI: 10.1016/j.jhep.2017.03.007.
GOETZ G, MITIĆ M, MITTERMAYR T, et al. OP157 Carbon Ion Radiotherapy: A Systematic Review[J]. Int J Technol Assess Health Care, 2019, 35(S1): 34-35. DOI: 10.1017/S0266462319001740.
LIU R F, ZHANG Q N, TIAN J H, et al. Application and prospect of heavy ion therapy in cancer treatment[J]. China Cancer, 2021, 30(8): 619-626. DOI: 10.11735/j.issn.1004-0242.2021.08.A008.
KUZUYA T, KAWABE N, HASHIMOTO S, et al. Early changes in alpha-fetoprotein are a useful predictor of efficacy of atezolizumab plus bevacizumab treatment in patients with advanced hepatocellular carcinoma[J]. Oncology, 2022, 100(1): 12-21. DOI: 10.1159/000519448.
WEBER U A, SCIFONI E, DURANTE M. FLASH radiotherapy with carbon ion beams[J]. Med Phys, 2022, 49(3): 1974-1992. DOI: 10.1002/mp.15135.
MÜNCHMEYER M, SMITH K M. Higher N-point function data analysis techniques for heavy particle production and WMAP results[J/OL]. Phys Rev D, 2019, 100(12): 123511 [2022-08-05]. DOI: 10.1103/physrevd.100.123511.
RACKWITZ T, DEBUS J. Clinical applications of proton and carbon ion therapy[J]. Semin Oncol, 2019, 46(3): 226-232. DOI: 10.1053/j.seminoncol.2019.07.005.
KASUYA G, KATO H, YASUDA S, et al. Progressive hypofractionated carbon-ion radiotherapy for hepatocellular carcinoma: combined analyses of 2 prospective trials[J]. Cancer, 2017, 123(20): 3955-3965. DOI: 10.1002/cncr.30816.
HAYASHI K, YAMAMOTO N, NAKAJIMA M, et al. Clinical outcomes of carbon-ion radiotherapy for locally advanced non-small-cell lung cancer[J]. Cancer Sci, 2019, 110(2): 734-741. DOI: 10.1111/cas.13890.
SHIBA S, ABE T, SHIBUYA K, et al. Carbon ion radiotherapy for 80 years or older patients with hepatocellular carcinoma[J/OL]. BMC Cancer, 2017, 17(1): 721 [2022-07-30]. DOI: 10.1186/s12885-017-3724-4.
SHIBA S, SHIBUYA K, KATOH H, et al. No deterioration in clinical outcomes of carbon ion radiotherapy for sarcopenia patients with hepatocellular carcinoma[J]. Anticancer Res, 2018, 38(6): 3579-3586. DOI: 10.21873/anticanres.12631.
SHAO L H, ZHANG Q N, LUO H T, et al. Carbonions and proton therapy for hepatocellular carcinoma: a meta-analysis[J]. Cancer Res Prev Treat, 2020, 47(5): 358-366. DOI: 10.3971/j.issn.1000-8578.2020.19.1158.
ZHENG C F, CHEN L, JIAN J H, et al. Efficacy evaluation of interventional therapy for primary liver cancer using magnetic resonance imaging and CT scanning under deep learning and treatment of vasovagal reflex[J].J Supercomput, 2021, 77(7): 7535-7548. DOI: 10.1007/s11227-020-03539-w.
GUPTA P, SOUNDARARAJAN R, PATEL A, et al. Abbreviated MRI for hepatocellular carcinoma screening: a systematic review and meta-analysis[J]. J Hepatol, 2021, 75(1): 108-119. DOI: 10.1016/j.jhep.2021.01.041.
MEYER H J, ZIEMANN O, KORNHUBER M, et al. Apparent diffusion coefficient (ADC) does not correlate with different serological parameters in myositis and myopathy[J]. Acta Radiol, 2018, 59(6): 694-699. DOI: 10.1177/0284185117731448.
CHOI Y J, LEE I S, SONG Y S, et al. Diagnostic performance of diffusion-weighted (DWI) and dynamic contrast-enhanced (DCE) MRI for the differentiation of benign from malignant soft-tissue tumors[J]. J Magn Reson Imaging, 2019, 50(3): 798-809. DOI: 10.1002/jmri.26607.
ZHAO D, HU Q Q, QI L P, et al. Magnetic resonance (MR) imaging for tumor staging and definition of tumor volumes on radiation treatment planning in nonsmall cell lung cancer[J/OL]. Medicine, 2017, 96(8): e5943 [2022-08-17]. DOI: 10.1097/md.0000000000005943.
AHMED E I, HASSAN M S, ABDEL-MUTALEB M G, et al. The role of diffusion weighted magnetic resonance imaging and subtraction magnetic resonance imaging in assessing treatment response of hepatocellular carcinoma after transarterial chemoembolization[J]. Egypt J Hosp Med, 2018, 72(3): 4165-4174. DOI: 10.21608/ejhm.2018.9133.
LITIÈRE S, COLLETTE S, DE VRIES E G E, et al. RECIST—learning from the past to build the future[J]. Nat Rev Clin Oncol, 2017, 14(3): 187-192. DOI: 10.1038/nrclinonc.2016.195.
OGIWARA H, TSUTSUMI Y, MATSUOKA K, et al. Apparent diffusion coefficient of intracranial germ cell tumors[J].J Neuro Oncol, 2015, 121(3): 565-571. DOI: 10.1007/s11060-014-1668-y.
SHAGHAGHI M, ALIYARI GHASABEH M, AMELI S, et al. Post-TACE changes in ADC histogram predict overall and transplant-free survival in patients with well-defined HCC: a retrospective cohort with up to 10 years follow-up[J]. Eur Radiol, 2021, 31(3): 1378-1390. DOI: 10.1007/s00330-020-07237-2.
KATHARINA INGENERF M, KARIM H, FINK N, et al. Apparent diffusion coefficients (ADC) in response assessment of transarterial radioembolization (TARE) for liver metastases of neuroendocrine tumors (NET): a feasibility study[J]. Acta Radiol, 2022, 63(7): 877-888. DOI: 10.1177/02841851211024004.
NIEKAMP A, ABDEL-WAHAB R, KUBAN J, et al. Baseline apparent diffusion coefficient as a predictor of response to liver-directed therapies in hepatocellular carcinoma[J/OL]. J Clin Med, 2018, 7(4): 83 [2022-08-17]. DOI: 10.3390/jcm7040083.
BOAS F E, KAMAYA A, DO B, et al. Classification of hypervascular liver lesions based on hepatic artery and portal vein blood supply coefficients calculated from triphasic CT scans[J]. J Digit Imaging, 2015, 28(2): 213-223. DOI: 10.1007/s10278-014-9725-9.
SHAO C C, ZHAO F, YU Y F, et al. Value of perfusion parameters and histogram analysis of triphasic computed tomography in pre-operative prediction of histological grade of hepatocellular carcinoma[J]. Chin Med J (Engl), 2021, 134(10): 1181-1190. DOI: 10.1097/CM9.0000000000001446.
CHEN B B, SHIH T T. DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker[J/OL]. World J Gastroenterol, 2014, 20(12): 3125 [2022-11-28]. DOI: 10.3748/wjg.v20.i12.3125.
LIU S R, DIAO P, HUANG X H. Correlation research of AFP expression in liver cancer tissue and serum with clinicopathological characteristics[J]. Chin J Surg Oncol, 2012, 4(4): 223-226. DOI: 10.3969/j.issn.1674-4136.2012.04.010.
DUVOUX C, ROUDOT-THORAVAL F, DECAENS T, et al. Liver transplantation for hepatocellular carcinoma: a model including α-fetoprotein improves the performance of Milan criteria[J/OL]. Gastroenterology, 2012, 143(4): 986-994.e3 [2022-11-28]. DOI: 10.1053/j.gastro.2012.08.011.
WATANABE T, TOKUMOTO Y, JOKO K, et al. AFP and eGFR are related to early and late recurrence of HCC following antiviral therapy[J/OL]. BMC Cancer, 2021, 21(1): 699 [2023-03-10]. DOI: 10.1186/s12885-021-08401-7.

PREV Bibliometric analysis in neuroimaging of epilepsy research
NEXT Brain regional homogeneity alterations in multi-frequency bands in primary dysmenorrhea: A resting-state functional magnetic resonance imaging study

Tel & Fax: +8610-67113815    E-mail: