Share this content in WeChat
Clinlcal Guidelines & Expert Consensu
Expert consensus on the clinical application of large bore MRI in fetal disease
Pediatric Group of Radiology Branch of Medicine Society of Hubei Province
Editorial Board of Chinese Journal of Magnetic Resonance Imaging

Cite this article as: Pediatric Group of Radiology Branch of Medicine Society of Hubei Province, Editorial Board of Chinese Journal of Magnetic Resonance Imaging. Expert consensus on the clinical application of large bore MRI in fetal disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 1-8, 25. DOI:10.12015/issn.1674-8034.2023.06.001.

[Abstract] MRI is an advanced technique for noninvasive functional assessment of the fetus, and has resulted in a relatively well-established clinical examination protocol that can provide anatomical and functional information of normal fetus and disease. At present, high-performance large pore MRI is a new trend in the development of clinical MR, which is able to provide "first-class" unprecedented spacious space and comfortable experience for the tested subjects and benefit special populations such as pregnant women, thus it has good research potential and clinical application prospects. This review regulates the selection, safety, applicability, scanning protocol and diagnostic report writing, and imaging quality control of fetal macropore MRI, aiming to unify the promotion of macropore MRI technology and promote its optimization, validation, and summary.
[Keywords] fetus;magnetic resonance imaging;large bore;expert consensus

Pediatric Group of Radiology Branch of Medicine Society of Hubei Province   Editorial Board of Chinese Journal of Magnetic Resonance Imaging  

Corresponding author: Zha YF, E-mail: Xia LM, E-mail: Shao JB, E-mail: He GJ, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Key Research and Development Program of China (No. 2019YFC0117700).
Received  2023-01-28
Accepted  2023-05-24
DOI: 10.12015/issn.1674-8034.2023.06.001
Cite this article as: Pediatric Group of Radiology Branch of Medicine Society of Hubei Province, Editorial Board of Chinese Journal of Magnetic Resonance Imaging. Expert consensus on the clinical application of large bore MRI in fetal disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 1-8, 25. DOI:10.12015/issn.1674-8034.2023.06.001.

DAWOOD Y, STRIJKERS G J, LIMPENS J, et al. Novel imaging techniques to study postmortem human fetal anatomy: a systematic review on microfocus-CT and ultra-high-field MRI[J]. Eur Radiol, 2020, 30(4): 2280-2292. DOI: 10.1007/s00330-019-06543-8.
DAVID A L, SPENCER R N. Clinical assessment of fetal well-being and fetal safety indicators[J]. J Clin Pharmacol, 2022, 62: S67-S78. DOI: 10.1002/jcph.2126.
YE J T. Application of MRI in prenatal diagnosis[J]. Chin J Perinat Med, 2014(12): 800-803. DOI: 10.3760/cma.j.issn.1007-9408.2014.12.003.
PRAYER D, MALINGER G, BRUGGER P C, et al. ISUOG Practice Guidelines: performance of fetal magnetic resonance imaging[J]. Ultrasound Obstet Gynecol, 2017, 49(5): 671-680. DOI: 10.1002/uog.17412.
RAY J G, VERMEULEN M J, BHARATHA A, et al. Association between MRI exposure during pregnancy and fetal and childhood outcomes[J]. JAMA, 2016, 316(9): 952-961. DOI: 10.1001/jama.2016.12126.
CHARTIER A L, BOUVIER M J, MCPHERSON D R, et al. The safety of maternal and fetal MRI at 3 T[J]. AJR Am J Roentgenol, 2019, 213(5): 1170-1173. DOI: 10.2214/AJR.19.21400.
GREENBERG T D, HOFF M N, GILK T B, et al. ACR guidance document on MR safe practices: Updates and critical information 2019[J]. J Magn Reson Imaging, 2020, 51(2): 331-338. DOI: 10.1002/jmri.26880.
CARUSI D. Pregnancy of unknown location: evaluation and management[J]. Semin Perinatol, 2019, 43(2): 95-100. DOI: 10.1053/j.semperi.2018.12.006.
JAIMES C, DELGADO J, CUNNANE M B, et al. Does 3-T fetal MRI induce adverse acoustic effects in the neonate? A preliminary study comparing postnatal auditory test performance of fetuses scanned at 1.5 and 3 T[J]. Pediatr Radiol, 2019, 49(1): 37-45. DOI: 10.1007/s00247-018-4261-2.
POWERS A M, WHITE C, NEUBERGER I, et al. Fetal MRI neuroradiology: indications[J]. Clin Perinatol, 2022, 49(3): 573-586. DOI: 10.1016/j.clp.2022.05.001.
Pediatric Group of Chinese Society of Radiology Chinese Medical Association, Radiology Group of Chinese Society of Pediatric Chinese Medical Association. Chinese expert consensus on fetal MRI[J]. Chin J Radiol, 2020, 54(12): 1153-1161. DOI: 10.3760/cma.j.cn112149-20200605-00779.
ZHANG S, YUAN X S, PENG Z, et al. Normal fetal development of the cervical, thoracic, and lumbar spine: a postmortem study based on magnetic resonance imaging[J]. Prenat Diagn, 2021, 41(8): 989-997. DOI: 10.1002/pd.5984.
SUN C, ZHANG X J, CHEN X, et al. Single-direction diffusion-weighted imaging may be a simple complementary sequence for evaluating fetal corpus callosum[J]. Eur Radiol, 2022, 32(2): 1135-1143. DOI: 10.1007/s00330-021-08176-2.
MOLTONI G, TALENTI G, RIGHINI A. Brain fetal neuroradiology: a beginner's guide[J]. Transl Pediatr, 2021, 10(4): 1065-1077. DOI: 10.21037/tp-20-293.
AVNI R, NEEMAN M, GARBOW J R. Functional MRI of the placenta–From rodents to humans[J]. Placenta, 2015, 36(6): 615-622. DOI: 10.1016/j.placenta.2015.04.003.
YAN G H, LIAO Y H, LI K, et al. Diffusion MRI based myometrium tractography for detection of placenta accreta spectrum disorder[J]. J Magn Reson Imaging, 2022, 55(1): 255-264. DOI: 10.1002/jmri.27794.
ABACI TURK E, STOUT J N, HA C, et al. Placental MRI: developing accurate quantitative measures of oxygenation[J]. Top Magn Reson Imaging, 2019, 28(5): 285-297. DOI: 10.1097/RMR.0000000000000221.
GAO T Y, LU Z, WANG F Z, et al. Using the compressed sensing technique for lumbar vertebrae imaging: comparison with conventional parallel imaging[J]. Curr Med Imaging, 2021, 17(8): 1010-1017. DOI: 10.2174/1573405617666210126155814.
HARIS K, HEDSTRÖM E, KORDING F, et al. Free-breathing fetal cardiac MRI with Doppler ultrasound gating, compressed sensing, and motion compensation[J]. J Magn Reson Imaging, 2020, 51(1): 260-272. DOI: 10.1002/jmri.26842.
ROY C W, SEED M, MACGOWAN C K. Accelerated MRI of the fetal heart using compressed sensing and metric optimized gating[J]. Magn Reson Med, 2017, 77(6): 2125-2135. DOI: 10.1002/mrm.26290.
LEVINE D, BARNES P D, ROBERTSON R R, et al. Fast MR imaging of fetal central nervous system abnormalities[J]. Radiology, 2003, 229(1): 51-61. DOI: 10.1148/radiol.2291020770.
AVESANI G, PERAZZOLO A, ELIA L, et al. Fetal MRI prior to intrauterine surgery of open neural tube defects: what does the radiologist need to know[J]. Radiol Med, 2023, 128(1): 113-124. DOI: 10.1007/s11547-022-01579-1.
KANG X, CARLIN A, CANNIE M M, et al. Fetal postmortem imaging: an overview of current techniques and future perspectives[J]. Am J Obstet Gynecol, 2020, 223(4): 493-515. DOI: 10.1016/j.ajog.2020.04.034.
SOCIETY FOR MATERNAL-FETAL MEDICINE SMFM); ELECTRONIC ADDRESS: PUBS@SMFM ORG, FOX N S, MONTEAGUDO A, et al. Mild fetal ventriculomegaly: diagnosis, evaluation, and management[J]. Am J Obstet Gynecol, 2018, 219(1): B2-B9. DOI: 10.1016/j.ajog.2018.04.039.
ENSO Working Group. Role of prenatal magnetic resonance imaging in fetuses with isolated mild or moderate ventriculomegaly in the era of neurosonography: international multicenter study[J]. Ultrasound Obstet Gynecol, 2020, 56(3): 340-347. DOI: 10.1002/uog.21974.
XIA W, SHAO J B, GUO Y. MRI evaluation of fetal corpus callosum agenesis and associated malformations[J]. Chin J Med Imaging Technol, 2020, 36(8): 1131-1134. DOI: 10.13929/j.issn.1003-3289.2020.08.003.
DOUGLAS WILSON R, VAN MIEGHEM T, LANGLOIS S, et al. Guideline No. 410: prevention, screening, diagnosis, and pregnancy management for fetal neural tube defects[J]. J D'obstetrique Gynecol Du Can, 2021, 43(1): 124-139. DOI: 10.1016/j.jogc.2020.11.003.
Pediatric Group of Chinese Society of Radiology Chinese Medical Association, Radiology Group of Chinese Society of Pediatric Chinese Medical Association, Pediatric Group of Beijing Society of Radiologyet al. Chinese expert consensus on pediatric brain and spine MRI[J]. Chin J Radiol, 2022, 56(7): 727-733. DOI: 10.3760/cma.j.cn112149-20211217-01116.
COLLERAN G C, KYNCL M, GAREL C, et al. Fetal magnetic resonance imaging at 3 Tesla-the European experience[J]. Pediatr Radiol, 2022, 52(5): 959-970. DOI: 10.1007/s00247-021-05267-6.
CAI X Y, CHEN X, SHAN R Q, et al. Susceptibility weighted imaging in evaluation of the fetal vertebra and vertebral anomalies[J]. Chin J Radiol, 2018, 52(2):119-124. DOI: 10.3760/cma.j.issn.1005-1201.2018.02.008.
VICTORIA T, JOHNSON A M, EDGAR J C, et al. Comparison between 1.5-T and 3-T MRI for fetal imaging: is there an advantage to imaging with a higher field strength?[J]. AJR Am J Roentgenol, 2016, 206(1): 195-201. DOI: 10.2214/AJR.14.14205.
RUBIO E I. Imaging of the fetal oral cavity, airway and neck[J].Pediatr Radiol, 2021, 51(7): 1122-1133. DOI: 10.1007/s00247-020-04851-6.
ZEMET R, AMDUR-ZILBERFARB I, SHAPIRA M, et al. Prenatal diagnosis of congenital head, face, and neck malformations-Is complementary fetal MRI of value?[J]. Prenat Diagn, 2020, 40(1): 142-150. DOI: 10.1002/pd.5593.
TIAN M M, XIAO L X, JIAN N, et al. Accurate diagnosis of fetal cleft lip/palate by typical signs of magnetic resonance imaging[J]. Prenat Diagn, 2019, 39(10): 883-889. DOI: 10.1002/pd.5499.
FERACO P, PICCININI S, GAGLIARDO C. Imaging of inner ear malformations: a primer for radiologists[J]. Radiol Med, 2021, 126(10): 1282-1295. DOI: 10.1007/s11547-021-01387-z.
LI X, HU K F. Value of MRI in the diagnosis of fetal cleft lip and palate[J]. Radiol Pract, 2016, 31(11): 1084-1088. DOI: 10.13609/j.cnki.1000-0313.2016.11.014.
WANG Y J, MA H J, YANG H, et al. Imaging manifestations of pediatric pulmonary sequestration with torsion[J]. Chin J Radiol, 2020, 54(11): 1125-1127. DOI: 10.3760/cma.j.cn112149-20191207-00969.
FUREY E A, BAILEY A A, TWICKLER D M. Fetal MR imaging of gastrointestinal abnormalities[J]. RadioGraphics, 2016, 36(3): 904-917. DOI: 10.1148/rg.2016150109.
LI K, YAN G H, ZHENG W Z, et al. Diagnostic value of prenatal MRI examination for fetal hypospadias[J]. Chin J Obstet Gynecol, 2019, 54(8): 548-551. DOI: 10.3760/cma.j.issn.0529-567x.2019.08.008.
HUGELE F, DUMONT C, BOULOT P, et al. Does prenatal MRI enhance fetal diagnosis of intra-abdominal cysts?[J]. Prenat Diagn, 2015, 35(7): 669-674. DOI: 10.1002/pd.4590.
MARINE M B, FORBES-AMRHEIN M M. Magnetic resonance imaging of the fetal gastrointestinal system[J].Pediatr Radiol, 2020, 50(13): 1895-1906. DOI: 10.1007/s00247-020-04677-2.
ROHRER L, VIAL Y, GENGLER C, et al. Prenatal imaging of anorectal malformations-10-year experience at a tertiary center in Switzerland[J]. Pediatr Radiol, 2020, 50(1): 57-67. DOI: 10.1007/s00247-019-04513-2.
WYMER K M, ANDERSON B B, WILKENS A A, et al. Megacystis microcolon intestinal hypoperistalsis syndrome: case series and updated review of the literature with an emphasis on urologic management[J]. J Pediatr Surg, 2016, 51(9): 1565-1573. DOI: 10.1016/j.jpedsurg.2016.06.011.
FAGHIHIMEHR A, GHARAVI M, MANCUSO M, et al. Fetal MR imaging in urogenital system anomalies[J]. J Matern Fetal Neonatal Med, 2019, 32(20): 3487-3494. DOI: 10.1080/14767058.2018.1465039.
DAVIDSON J R, UUS A, MATTHEW J, et al. Fetal body MRI and its application to fetal and neonatal treatment: an illustrative review[J]. Lancet Child Adolesc Health, 2021, 5(6): 447-458. DOI: 10.1016/S2352-4642(20)30313-8.
LU T, WANG Y S, GUO A W, et al. Correlation of placental thickness and placenta percreta in patients with placenta previa: findings from MRI[J]. Abdom Radiol (NY), 2022, 47(12): 4237-4244. DOI: 10.1007/s00261-022-03676-1.
ZAGHAL A A, HUSSAIN H K, BERJAWI G A. MRI evaluation of the placenta from normal variants to abnormalities of implantation and malignancies[J]. J Magn Reson Imaging, 2019, 50(6): 1702-1717. DOI: 10.1002/jmri.26764.
THIRAVIT S, MA K, GOLDMAN I, et al. Role of ultrasound and MRI in diagnosis of severe placenta accreta spectrum disorder: an intraindividual assessment with emphasis on placental bulge[J]. AJR Am J Roentgenol, 2021, 217(6): 1377-1388. DOI: 10.2214/AJR.21.25581.
CHEN Y J, SUN Y, TAO Y, et al. The value of right-hand rule in determining left-right axis in fetal MRI[J]. Chin J Radiol, 2022, 56(5): 494-497. DOI: 10.3760/cma.j.cn112149-20210726-00703.
TIAN Z Y, SHAO J B. The feasibility study of IVIM-DWI for evaluating split glomerular filtration rate in children with CAKUT[J]. Radiol Pract, 2020, 35(2): 228-233. DOI: 10.13609/j.cnki.1000-0313.2020.02.020.
National Health Commission. Notification on the publication of basic standards of medical institutions undertaking prenatal screening technology and of medical institutions undertaking prenatal diagnosis technology[EB/OL]. [2023-01-06].

PREV Research progress of synthetic magnetic resonance imaging technology in malignant tumors
NEXT Interhemispheric structural connectivity abnormalities in Alzheimer,s disease and mild cognitive impairment: A DTI-based study

Tel & Fax: +8610-67113815    E-mail: