Share this content in WeChat
Research progress of synthetic magnetic resonance imaging technology in malignant tumors
ZHANG Qin  ZHANG Yulong  LIU Xi 

Cite this article as: ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imaging, 2023, 14(5): 196-202. DOI:10.12015/issn.1674-8034.2023.05.035.

[Abstract] Synthetic magnetic resonance imaging (SyMRI) is a new quantitative relaxation technique of MRI, which can quantify the relaxation time and proton density of tissues by a single scan. Multiple quantitative relaxation maps can be obtained at the same time, which can be directly used for tissue quantitative analysis and provide more valuable diagnostic information for clinic. SyMRI is usually applied in diagnosis of intracranial diseases and detection of brain parenchymal development. With the development of SyMRI technology and the increasing incidence of malignant tumors, SyMRI technology has been gradually applied to the imaging diagnosis of common clinical malignant tumors. This paper summarized the basic principle of SyMRI technology and its research progress in common malignant tumors such as breast cancer, glioblastoma, prostate cancer, rectal cancer, bladder cancer, endometrial cancer, cervical cancer, etc., in order to provide evidence and reference for the differential diagnosis and typing, diagnosis and treatment planning, and prognosis evaluation of malignant tumors.
[Keywords] magnetic resonance imaging;synthetic magnetic resonance imaging;malignant tumor;breast cancer;malignant glioma;prostate cancer;rectal cancer;bladder cancer;endometrial carcinoma;cervical carcinoma

ZHANG Qin   ZHANG Yulong   LIU Xi*  

Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China

Corresponding author: Liu X, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Chongqing Natural Science Foundation of China (No. cstc2021jcyj-msxmX0727).
Received  2021-11-17
Accepted  2023-04-04
DOI: 10.12015/issn.1674-8034.2023.05.035
Cite this article as: ZHANG Q, ZHANG Y L, LIU X. Research progress of synthetic magnetic resonance imaging technology in malignant tumors[J]. Chin J Magn Reson Imaging, 2023, 14(5): 196-202. DOI:10.12015/issn.1674-8034.2023.05.035.

GARCIA-REYES K, PASSONI N M, PALMERI M L, et al. Detection of prostate cancer with multiparametric MRI (mpMRI): effect of dedicated reader education on accuracy and confidence of index and anterior cancer diagnosis[J]. Abdom Imaging, 2015, 40(1): 134-142. DOI: 10.1007/s00261-014-0197-7">10.1007/s00261-014-0197-7">10.1007/s00261-014-0197-7.
ZHU L H, LIU H, ZHOU J J. Research progress of magnetic resonance T2-mapping in body malignant tumors[J]. Chin J Magn Reson Imaging, 2020, 11(5): 398-400. DOI: 10.12015/issn.1674-8034.2020.05.019">10.12015/issn.1674-8034.2020.05.019">10.12015/issn.1674-8034.2020.05.019.
HAGIWARA A, WARNTJES M, HORI M, et al. SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement[J]. Invest Radiol, 2017, 52(10): 647-657. DOI: 10.1097/RLI.0000000000000365">10.1097/RLI.0000000000000365">10.1097/RLI.0000000000000365.
WARNTJES J B, LEINHARD O D, WEST J, et al. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage[J]. Magn Reson Med, 2008, 60(2): 320-329. DOI: 10.1002/mrm.21635">10.1002/mrm.21635">10.1002/mrm.21635.
HAGIWARA A, HORI M, COHEN-ADAD J, et al. Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls[J]. Invest Radiol, 2019, 54(1): 39-47. DOI: 10.1097/RLI.0000000000000510">10.1097/RLI.0000000000000510">10.1097/RLI.0000000000000510.
LIU Y W, NIU H J, YIN H X, et al. A comparative study on phantom verification of T1 and T2 relaxation values determined by synthetic MRI and conventional mapping methods[J]. Chin J Magn Reson Imaging, 2022, 13(4)89-93. DOI: 10.12015/issn.1674-8034.2022.04.016">10.12015/issn.1674-8034.2022.04.016">10.12015/issn.1674-8034.2022.04.016
ANDRÉ J, BARRIT S, JISSENDI P. Synthetic MRI for stroke: a qualitative and quantitative pilot study[J/OL]. Sci Rep, 2022, 12(1): 11552 [2022-12-25]. DOI: 10.1038/s41598-022-15204-8">10.1038/s41598-022-15204-8">10.1038/s41598-022-15204-8.
ANDICA C, HAGIWARA A, HORI M, et al. Review of synthetic MRI in pediatric brains: basic principle of MR quantification, its features, clinical applications, and limitations[J]. J De Neuroradiol, 2019, 46(4): 268-275. DOI: 10.1016/j.neurad.2019.02.005">10.1016/j.neurad.2019.02.005">10.1016/j.neurad.2019.02.005.
COBAN G, PARLAK S, GUMELER E, et al. Synthetic MRI in neurofibromatosis type 1[J]. AJNR Am J Neuroradiol, 2021, 42(9): 1709-1715. DOI: 10.3174/ajnr.A7214">10.3174/ajnr.A7214">10.3174/ajnr.A7214.
CAO J B, XU X H, ZHU J Y, et al. Rapid quantification of global brain volumetry and relaxometry in patients with multiple sclerosis using synthetic magnetic resonance imaging[J]. Quant Imaging Med Surg, 2022, 12(6): 3104-3114. DOI: 10.21037/qims-21-970">10.21037/qims-21-970">10.21037/qims-21-970.
LIU L, YIN B, GENG D Y, et al. Changes of T2 relaxation time from neoadjuvant chemotherapy in breast cancer lesions[J/OL]. Iran J Radiol, 2016, 13(3): e24014 [2021-11-11]. DOI: 10.5812/iranjradiol.24014">10.5812/iranjradiol.24014">10.5812/iranjradiol.24014.
GONÇALVES F G, SERAI S D, ZUCCOLI G. Synthetic brain MRI: review of current concepts and future directions[J]. Top Magn Reson Imaging, 2018, 27(6): 387-393. DOI: 10.1097/RMR.0000000000000189">10.1097/RMR.0000000000000189">10.1097/RMR.0000000000000189.
HWANG K P, FUJITA S. Synthetic MR: physical principles, clinical implementation, and new developments[J]. Med Phys, 2022, 49(7): 4861-4874. DOI: 10.1002/mp.15686">10.1002/mp.15686">10.1002/mp.15686.
HUIZINGA W, POOT D H, GUYADER J M, et al. PCA-based groupwise image registration for quantitative MRI[J]. Med Image Anal, 2016, 29: 65-78. DOI: 10.1016/">10.1016/">10.1016/
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492">10.3322/caac.21492">10.3322/caac.21492.
FUJIOKA T, MORI M, OYAMA J, et al. Investigating the image quality and utility of synthetic MRI in the breast[J]. Magn Reson Med Sci, 2021, 20(4): 431-438. DOI: 10.2463/">10.2463/">10.2463/
JUNG Y, GHO S M, BACK S N, et al. The feasibility of synthetic MRI in breast cancer patients: comparison of T2 relaxation time with multiecho spin echo T2 mapping method[J/OL]. Br J Radiol, 2018, 92(1093): 20180479 [2021-11-11]. DOI: 10.1259/bjr.20180479">10.1259/bjr.20180479">10.1259/bjr.20180479.
MENG T B, HE N, HE H Q, et al. The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI[J]. Cancer Imaging, 2020, 20(1): 88. DOI: 10.1186/s40644-020-00365-4">10.1186/s40644-020-00365-4">10.1186/s40644-020-00365-4.
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2021-11-11]. DOI: 10.1016/j.ejrad.2021.109697">10.1016/j.ejrad.2021.109697">10.1016/j.ejrad.2021.109697.
MATSUDA M, TSUDA T, EBIHARA R, et al. Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: a comparison with non-triple-negative breast carcinoma[J/OL]. Eur J Radiol, 2021, 142: 109838 [2021-11-11]. DOI: 10.1016/j.ejrad.2021.109838">10.1016/j.ejrad.2021.109838">10.1016/j.ejrad.2021.109838.
SHUI R H, YANG W T. Detection and evaluation of Ki-67 positive index in breast cancer[J]. Chin J Pathol, 2013, 42(6): 420-423. DOI: 10.3760/cma.j.issn.0529-5807.2013.06.019">10.3760/cma.j.issn.0529-5807.2013.06.019">10.3760/cma.j.issn.0529-5807.2013.06.019.
YANG X Q, LI Y. Progress of Ki67 protein study in breast cancer[J]. Med J Wuhan Univ, 2011, 32(6)852-856. DOI: 10.3969/j.issn.1000-467X.2004.10.014">10.3969/j.issn.1000-467X.2004.10.014">10.3969/j.issn.1000-467X.2004.10.014
LI F Z, LI Q, WU S S, et al. Histogram features of quantitative parameters from synthetic MRI and ADC map in predicting the expression of Ki-67 in breast cancer[J]. Chin J Magn Reson Imaging, 2022, 13(7)29-34, 67. DOI: 10.12015/issn.1674-8034.2022.07.006">10.12015/issn.1674-8034.2022.07.006">10.12015/issn.1674-8034.2022.07.006
MATSUDA M, KIDO T, TSUDA T, et al. Utility of synthetic MRI in predicting the Ki-67 status of oestrogen receptor-positive breast cancer: a feasibility study[J/OL]. Clin Radiol, 2020, 75(5): 398.e1-398398.e8 [2021-11-12]. DOI: 10.1016/j.crad.2019.12.021.
MATSUDA M, TSUDA T, EBIHARA R, et al. Enhanced masses on contrast-enhanced breast: differentiation using a combination of dynamic contrast-enhanced MRI and quantitative evaluation with synthetic MRI[J]. J Magn Reson Imaging, 2021, 53(2): 381-391. DOI: 10.1002/jmri.27362">10.1002/jmri.27362">10.1002/jmri.27362.
GAO W B, ZHANG S Q, GUO J X, et al. Investigation of synthetic relaxometry and diffusion measures in the differentiation of benign and malignant breast lesions as compared to BI-RADS[J]. J Magn Reson Imaging, 2021, 53(4): 1118-1127. DOI: 10.1002/jmri.27435">10.1002/jmri.27435">10.1002/jmri.27435.
SUN S Y, DING Y Y, LI Z L, et al. Multiparameter MRI model with DCE-MRI, DWI, and synthetic MRI improves the diagnostic performance of BI-RADS 4 lesions[J/OL]. Front Oncol, 2021, 11: 699127 [2021-11-15]. DOI: 10.3389/fonc.2021.699127">10.3389/fonc.2021.699127">10.3389/fonc.2021.699127.
SONG M N, DONG L, HE H, et al. Value of syMRI and DWI quantitative parameters measured using different regions of interest method in differentiating benign and malignant breast lesions[J]. Chin J Magn Reson Imaging, 2022, 13(6): 17-22, 27. DOI: 10.12015/issn.1674-8034.2022.06.004">10.12015/issn.1674-8034.2022.06.004">10.12015/issn.1674-8034.2022.06.004.
OSTROM Q T, BAUCHET L, DAVIS F G, et al. The epidemiology of glioma in adults: a "state of the science" review[J]. Neuro Oncol, 2014, 16(7): 896-913. DOI: 10.1093/neuonc/nou087">10.1093/neuonc/nou087">10.1093/neuonc/nou087.
JOHNSON D R, O'NEILL B P. Glioblastoma survival in the United States before and during the temozolomide era[J]. J Neurooncol, 2012, 107(2): 359-364. DOI: 10.1007/s11060-011-0749-4">10.1007/s11060-011-0749-4">10.1007/s11060-011-0749-4.
BOONZAIER N R, LARKIN T J, MATYS T, et al. Multiparametric MR imaging of diffusion and perfusion in contrast-enhancing and nonenhancing components in patients with glioblastoma[J]. Radiology, 2017, 284(1): 180-190. DOI: 10.1148/radiol.2017160150">10.1148/radiol.2017160150">10.1148/radiol.2017160150.
BADVE C, YU A, DASTMALCHIAN S, et al. MR fingerprinting of adult brain tumors: initial experience[J]. AJNR Am J Neuroradiol, 2017, 38(3): 492-499. DOI: 10.3174/ajnr.A5035">10.3174/ajnr.A5035">10.3174/ajnr.A5035.
RAO A, RAO G, GUTMAN D A, et al. A combinatorial radiographic phenotype may stratify patient survival and be associated with invasion and proliferation characteristics in glioblastoma[J]. J Neurosurg, 2016, 124(4): 1008-1017. DOI: 10.3171/2015.4.JNS142732">10.3171/2015.4.JNS142732">10.3171/2015.4.JNS142732.
BLYSTAD I, WARNTJES J B M, SMEDBY Ö, et al. Quantitative MRI for analysis of peritumoral edema in malignant gliomas[J/OL]. PLoS One, 2017, 12(5): e0177135 [2022-12-25]. DOI: 10.1371/journal.pone.0177135">10.1371/journal.pone.0177135">10.1371/journal.pone.0177135.
NUNEZ-GONZALEZ L, VAN GARDEREN K A, SMITS M, et al. Pre-contrast MAGiC in treated gliomas: a pilot study of quantitative MRI[J/OL]. Sci Rep, 2022, 12(1): 21820 [2022-12-25]. DOI: 10.1038/s41598-022-24276-5">10.1038/s41598-022-24276-5">10.1038/s41598-022-24276-5.
LÜ R R, YANG Z H, GE X, et al. Preliminary study of synthetic MRI combined with three-dimensional arterial spin labeling imaging in differentiating recurrence and pseudoprogression of glioma[J]. Chin J Magn Reson Imaging, 2022, 13(8)19-23, 35. DOI: 10.12015/issn.1674-8034.2022.08.004">10.12015/issn.1674-8034.2022.08.004">10.12015/issn.1674-8034.2022.08.004
ZHAO X M, WANG X, WANG L N, et al. The comparison of the value of PI-RADS v2, DWI and T2WI in the diagnosis of prostate cancer[J]. J Clin Radiol, 2018, 37(11): 1879-1882. DOI: 10.3760/cma.j.issn.1005-1201.2015.10.023">10.3760/cma.j.issn.1005-1201.2015.10.023">10.3760/cma.j.issn.1005-1201.2015.10.023.
WEINREB J C, BARENTSZ J O, CHOYKE P L, et al. PI-RADS Prostate Imaging-Reporting and Data System: 2015, Version 2[J]. Eur Urol, 2016, 69(1):16-40. DOI: 10.1016/j.eururo.2015.08.052">10.1016/j.eururo.2015.08.052">10.1016/j.eururo.2015.08.052.
CUI Y D, LI C M, HAN S Y, et al. The diagnostic value of synthetic MRI quantitative parameters for prostate cancer[J]. Chin J Radiol, 2021, 55(9): 975-980. DOI: 10.3760/cma.j.cn112149-20200721-00935">10.3760/cma.j.cn112149-20200721-00935">10.3760/cma.j.cn112149-20200721-00935
MENG T B, LIU H M, ZHANG W J, et al. Quantification of relaxation time by synthetic MRI in diagnosis of prostate cancer[J]. J Clin Radiol, 2020, 39(3): 605-608.
ARITA Y, TAKAHARA T, YOSHIDA S, et al. Quantitative assessment of bone metastasis in prostate cancer using synthetic magnetic resonance imaging[J]. Invest Radiol, 2019, 54(10): 638-644. DOI: 10.1097/RLI.0000000000000579">10.1097/RLI.0000000000000579">10.1097/RLI.0000000000000579.
ARITA Y, AKITA H, FUJIWARA H, et al. Synthetic magnetic resonance imaging for primary prostate cancer evaluation: diagnostic potential of a non-contrast-enhanced bi-parametric approach enhanced with relaxometry measurements[J/OL]. Eur J Radiol Open, 2022, 9: 100403 [2022-12-26]. DOI: 10.1016/j.ejro.2022.100403">10.1016/j.ejro.2022.100403">10.1016/j.ejro.2022.100403.
SONG N, WANG T, ZHANG D, et al. The value of relaxation time quantitative technique from synthetic magnetic resonance imaging in the diagnosis and invasion assessment of prostate cancer[J]. Natl Med J China, 2022, 102(15): 1093-1099. DOI: 10.3760/cma.j.cn112137-20211018-02304">10.3760/cma.j.cn112137-20211018-02304">10.3760/cma.j.cn112137-20211018-02304
PARK H M, WOO H, JUNG S J, et al. Colorectal cancer incidence in 5 Asian countries by subsite: an analysis of Cancer Incidence in Five Continents (1998-2007)[J]. Cancer Epidemiol, 2016, 45: 65-70. DOI: 10.1016/j.canep.2016.09.012">10.1016/j.canep.2016.09.012">10.1016/j.canep.2016.09.012.
ZHAO L, LIANG M, WU P Y, et al. A preliminary study of synthetic magnetic resonance imaging in rectal cancer: imaging quality and preoperative assessment[J/OL]. Insights Imaging, 2021, 12(1): 120 [2021-11-16]. DOI: 10.1186/s13244-021-01063-w.
ZHAO L, LIANG M, SHI Z, et al. Preoperative volumetric synthetic magnetic resonance imaging of the primary tumor for a more accurate prediction of lymph node metastasis in rectal cancer[J]. Quant Imaging Med Surg, 2021, 11(5): 1805-1816. DOI: 10.21037/qims-20-659">10.21037/qims-20-659">10.21037/qims-20-659.
ZHAO L, LIANG M, WANG S C, et al. Preoperative evaluation of extramural venous invasion in rectal cancer using radiomics analysis of relaxation maps from synthetic MRI[J]. Abdom Radiol (NY), 2021, 46(8): 3815-3825. DOI: 10.1007/s00261-021-03021-y">10.1007/s00261-021-03021-y">10.1007/s00261-021-03021-y.
ZHAO L, LIANG M, XIE L Z, et al. Prediction of pathological prognostic factors of rectal cancer by relaxation maps from synthetic magnetic resonance imaging[J/OL]. Eur J Radiol, 2021, 138: 109658 [2021-11-13]. DOI: 10.1016/j.ejrad.2021.109658.
LIAN S S, LIU H M, MENG T B, et al. Quantitative synthetic MRI for predicting locally advanced rectal cancer response to neoadjuvant chemoradiotherapy[J]. Eur Radiol, 2023, 33(3): 1737-1745. DOI: 10.1007/s00330-022-09191-7">10.1007/s00330-022-09191-7">10.1007/s00330-022-09191-7.
MA L D, LIAN S S, LIU H M, et al. Diagnostic performance of synthetic magnetic resonance imaging in the prognostic evaluation of rectal cancer[J]. Quant Imaging Med Surg, 2022, 12(7): 3580-3591. DOI: 10.21037/qims-22-24">10.21037/qims-22-24">10.21037/qims-22-24.
CAI Q, WEN Z H, HUANG Y P, et al. Investigation of synthetic magnetic resonance imaging applied in the evaluation of the tumor grade of bladder cancer[J/OL]. J Magn Reson Imaging, 2021, 54(6): 1989-1997 [2021-11-14]. DOI: 10.1002/jmri.27770">10.1002/jmri.27770">10.1002/jmri.27770.
WANG Y A, HE M G, CAO P, et al. Tissue characteristics of endometrial carcinoma analyzed by quantitative synthetic MRI and diffusion-weighted imaging[J]. Diagnostics (Basel), 2022, 12(12): 2956 [2022-12-25]. DOI: 10.3390/diagnostics12122956">10.3390/diagnostics12122956">10.3390/diagnostics12122956.
ZHANG W J, LU N, HE H Q, et al. Application of synthetic magnetic resonance imaging and DWI for evaluation of prognostic factors in cervical carcinoma: a prospective preliminary study[J/OL]. Br J Radiol, 2023, 96(1141): 20220596 [2022-12-25]. DOI: 10.1259/bjr.20220596">10.1259/bjr.20220596">10.1259/bjr.20220596.

PREV Advances in the assessment of biological behaviors of endometrial carcinoma by IVIM-DWI and texture analysis
NEXT Expert consensus on the clinical application of large bore MRI in fetal disease

Tel & Fax: +8610-67113815    E-mail: