Share this content in WeChat
Advances in the assessment of biological behaviors of endometrial carcinoma by IVIM-DWI and texture analysis
JIANG Xueyan  DONG Jiangning 


[Abstract] Recently, endometrial carcinoma, as the second malignant tumor of female reproductive system, its incidence and morbidity have been on the rise in our country, which seriously threatens the life and health of women. The biological behaviors of the endometrial carcinoma, such as pathological type, stage, grade and cell proliferation, are important factors affecting the diagnosis, treatment and prognosis of the patients. However, the evaluation of these biological behaviors often needs to be obtained by biopsy or post-operative pathology, which is not only invasive but also information-delayed. Therefore, it is manifested that an early non-invasive method to predict the biological behaviors of endometrial carcinoma is urgently necessary for clinical application, so as to guide the individualized treatment and prognostic evaluation of patients. Intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) can non-invasively evaluate the water molecule diffusion and microcirculation perfusion of tumor tissue at the molecular level. Texture analysis can objectively and quantitatively evaluate tumor heterogeneity from a microscopic perspective. IVIM-DWI and texture analysis provide pathophysiological information and microscopic level information for accurately predicting the biological behaviors of endometrial carcinoma, which makes up for the deficiency of biopsy and surgical pathology and is expected to provide new ideas for the diagnosis and treatment of endometrial carcinoma. This article reviews the latest research progress of IVIM-DWI and texture analysis techniques in predicting the biological behaviors of endometrial carcinoma in recent years. The application value of IVIM-DWI and texture analysis in evaluating the biological behaviors of endometrial carcinoma was analyzed from the histological typing, grading and Ki-67 expression of endometrial carcinoma, aiming to provide a basis for early non-invasive evaluation of patient prognosis and development of individualized treatment plans.
[Keywords] endometrial carcinoma;magnetic resonance imaging;intravoxel incoherent motion;diffusion weighted imaging;texture analysis;typing;grading;Ki-67

JIANG Xueyan1   DONG Jiangning1, 2*  

1 Bengbu Medical College Graduate School, Bengbu 233030, China

2 Department of Radiology, West Branch of the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230031, China

Corresponding author: Dong JN, E-mail:

Conflicts of interest   None.

Received  2022-11-15
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.05.034

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660">10.3322/caac.21660">10.3322/caac.21660.
LE BIHAN D, BRETON E, LALLEMAND D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909">10.1148/radiology.161.2.3763909">10.1148/radiology.161.2.3763909.
RIZZO S, BOTTA F, RAIMONDI S, et al. Radiomics: the facts and the challenges of image analysis[J/OL]. Eur Radiol Exp, 2018, 2(1): 36 [2023-03-08]. DOI: 10.1186/s41747-018-0068-z">10.1186/s41747-018-0068-z">10.1186/s41747-018-0068-z.
YAMADA I, MIYASAKA N, KOBAYASHI D, et al. Endometrial carcinoma: texture analysis of apparent diffusion coefficient maps and its correlation with histopathologic findings and prognosis[J/OL]. Radiol Imaging Cancer, 2019, 1(2): e190054 [2023-03-08]. DOI: 10.1148/rycan.2019190054">10.1148/rycan.2019190054">10.1148/rycan.2019190054.
YUE X N, HE X Y, HE S J, et al. Multiparametric magnetic resonance imaging-based radiomics nomogram for predicting tumor grade in endometrial cancer[J/OL]. Front Oncol, 2023, 13: 1081134 [2023-04-28]. DOI: 10.3389/fonc.2023.1081134">10.3389/fonc.2023.1081134">10.3389/fonc.2023.1081134.
CHRYSSOU E G, MANIKIS G C, IOANNIDIS G S, et al. Diffusion weighted imaging in the assessment of tumor grade in endometrial cancer based on intravoxel incoherent motion MRI[J/OL]. Diagnostics, 2022, 12(3): 692 [2023-03-08]. DOI: 10.3390/diagnostics12030692">10.3390/diagnostics12030692">10.3390/diagnostics12030692.
LI Y, LIN C Y, QI Y F, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted and intravoxel incoherent motion MR imaging for type I endometrial carcinoma: correlation with Ki-67 proliferation status[J]. Magn Reson Imaging, 2021, 78: 18-24. DOI: 10.1016/j.mri.2021.02.006">10.1016/j.mri.2021.02.006">10.1016/j.mri.2021.02.006.
ZHANG G Y, YAN R F, LIU W Y, et al. Use of biexponential and stretched exponential models of intravoxel incoherent motion and dynamic contrast-enhanced magnetic resonance imaging to assess the proliferation of endometrial carcinoma[J]. Quant Imaging Med Surg, 2023, 13(4): 2568-2581. DOI: 10.21037/qims-22-688">10.21037/qims-22-688">10.21037/qims-22-688.
BOKHMAN J V. Two pathogenetic types of endometrial carcinoma[J]. Gynecol Oncol, 1983, 15(1): 10-17. DOI: 10.1016/0090-8258(83)90111-7">10.1016/0090-8258(83)90111-7">10.1016/0090-8258(83)90111-7.
SOSLOW R A, TORNOS C, PARK K J, et al. Endometrial carcinoma diagnosis: use of FIGO grading and genomic subcategories in clinical practice: recommendations of the international society of gynecological pathologists[J]. Int J Gynecol Pathol, 2019, 38(Suppl 1): S64-S74. DOI: 10.1097/PGP.0000000000000518">10.1097/PGP.0000000000000518">10.1097/PGP.0000000000000518.
MCCLUGGAGE W G, SINGH N, GILKS C B. Key changes to the World Health Organization (WHO) classification of female genital tumours introduced in the 5th edition (2020)[J]. Histopathology, 2022, 80(5): 762-778. DOI: 10.1111/his.14609">10.1111/his.14609">10.1111/his.14609.
BARRETINA-GINESTA M P, QUINDÓS M, ALARCÓN J D, et al. SEOM-GEICO clinical guidelines on endometrial cancer (2021)[J]. Clin Transl Oncol, 2022, 24(4): 625-634. DOI: 10.1007/s12094-022-02799-7">10.1007/s12094-022-02799-7">10.1007/s12094-022-02799-7.
Chinese Anti-Cancer Association Gynecological Oncology Committee. Guidelines for diagnosis and treatment of endometrial cancer (2021 edition)[J]. China Oncol, 2021, 31(6): 501-512. DOI: 10.19401/j.cnki.1007-3639.2021.06.08">10.19401/j.cnki.1007-3639.2021.06.08">10.19401/j.cnki.1007-3639.2021.06.08.
GERDES J, LEMKE H, BAISCH H, et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67[J]. J Immunol, 1984, 133(4): 1710-1715.
DARZYNKIEWICZ Z, ZHAO H, ZHANG S F, et al. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry[J]. Oncotarget, 2015, 6(14): 11735-11750. DOI: 10.18632/oncotarget.4149">10.18632/oncotarget.4149">10.18632/oncotarget.4149.
JAIN P, DOVAL D C, BATRA U, et al. Ki-67 labeling index as a predictor of response to neoadjuvant chemotherapy in breast cancer[J]. Jpn J Clin Oncol, 2019, 49(4): 329-338. DOI: 10.1093/jjco/hyz012">10.1093/jjco/hyz012">10.1093/jjco/hyz012.
Li Z H, Li F, Pan C, et al. Tumor cell proliferation (Ki-67) expression and its prognostic significance in histological subtypes of lung adenocarcinoma[J]. Lung Cancer, 2021, 154: 69-75. DOI: 10.1016/j.lungcan.2021.02.009">10.1016/j.lungcan.2021.02.009">10.1016/j.lungcan.2021.02.009.
BYUN S S, LEE M, HONG S K, et al. Elevated Ki-67 (MIB-1) expression as an independent predictor for unfavorable pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with localized prostate cancer: a propensity score matched study[J/OL]. PLoS One, 2019, 14(11): e0224671 [2023-03-08]. DOI: 10.1371/journal.pone.0224671">10.1371/journal.pone.0224671">10.1371/journal.pone.0224671.
SEO S H, KIM K H, OH S H, et al. Ki-67 labeling index as a prognostic marker in advanced stomach cancer[J]. Ann Surg Treat Res, 2019, 96(1): 27-33. DOI: 10.4174/astr.2019.96.1.27">10.4174/astr.2019.96.1.27">10.4174/astr.2019.96.1.27.
OCAK B, ATALAY F Ö, SAHIN A B, et al. The impact of Ki-67 index, squamous differentiation, and several clinicopathologic parameters on the recurrence of low and intermediate-risk endometrial cancer[J]. Bosn J Basic Med Sci, 2021, 21(5): 549-554. DOI: 10.17305/bjbms.2020.5437">10.17305/bjbms.2020.5437">10.17305/bjbms.2020.5437.
JIANG P, JIA M Z, HU J, et al. Prognostic value of Ki67 in patients with stage 1-2 endometrial cancer: validation of the cut-off value of Ki67 as a predictive factor[J]. Oncotargets Ther, 2020, 13: 10841-10850. DOI: 10.2147/ott.s274420">10.2147/ott.s274420">10.2147/ott.s274420.
SHIOZAKI T, MIWA M, SAKUMA T, et al. Correlation between pre-operative and final histological diagnosis on endometrial cancer[J]. Int J Gynecol Cancer, 2019, 29(5): 886-889. DOI: 10.1136/ijgc-2018-000041">10.1136/ijgc-2018-000041">10.1136/ijgc-2018-000041.
MARIO M, LEITAO, JR, et al. Comparison of D&C and office endometrial biopsy accuracy in patients with FIGO grade 1 endometrial adenocarcinoma[J]. Gynecol Oncol, 2009, 113(1): 105-108. DOI: 10.1016/j.ygyno.2008.12.017">10.1016/j.ygyno.2008.12.017">10.1016/j.ygyno.2008.12.017.
ZHANG C, YU X, ZHANG Y H, et al. Differences of ki-67 index in breast cancer patients between core needle biopsy and surgical specimens and its influencing factors[J]. Chin J Minim Invasive Surg, 2019, 19(11): 977-980, 992. DOI: 10.3969/j.issn.1009-6604.2019.11.005">10.3969/j.issn.1009-6604.2019.11.005">10.3969/j.issn.1009-6604.2019.11.005.
KALVALA J, PARKS R M, GREEN A R, et al. Concordance between core needle biopsy and surgical excision specimens for Ki-67 in breast cancer - a systematic review of the literature[J]. Histopathology, 2022, 80(3): 468-484. DOI: 10.1111/his.14555">10.1111/his.14555">10.1111/his.14555.
ZHANG K Y, ZHANG Y, FANG X, et al. Nomograms of combining apparent diffusion coefficient value and radiomics for preoperative risk evaluation in endometrial carcinoma[J/OL]. Front Oncol, 2021, 11: 705456 [2023-03-08]. DOI: 10.3389/fonc.2021.705456">10.3389/fonc.2021.705456">10.3389/fonc.2021.705456.
ZHU S C, LIU Y H, WEI Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: comparison with conventional diffusion-weighted imaging[J]. World J Gastroenterol, 2018, 24(8): 929-940. DOI: 10.3748/wjg.v24.i8.929">10.3748/wjg.v24.i8.929">10.3748/wjg.v24.i8.929.
ZHOU Y, ZHENG J, YANG C, et al. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(27): 3334-3345. DOI: 10.3748/wjg.v28.i27.3334">10.3748/wjg.v28.i27.3334">10.3748/wjg.v28.i27.3334.
HU Q, JIANG P P, FENG Y J, et al. Noninvasive assessment of endometrial fibrosis in patients with intravoxel incoherent motion MR imaging[J/OL]. Sci Rep, 2021, 11(1): 12887 [2023-03-08]. DOI: 10.1038/s41598-021-92383-w">10.1038/s41598-021-92383-w">10.1038/s41598-021-92383-w.
LECLER A, DURON L, ZMUDA M, et al. Intravoxel incoherent motion (IVIM) 3 T MRI for orbital lesion characterization[J]. Eur Radiol, 2021, 31(1): 14-23. DOI: 10.1007/s00330-020-07103-1">10.1007/s00330-020-07103-1">10.1007/s00330-020-07103-1.
LIU J Y, WAN Y D, WANG Z, et al. Perfusion and diffusion characteristics of endometrial malignancy based on intravoxel incoherent motion MRI at 3.0 T: comparison with normal endometrium[J]. Acta Radiol, 2016, 57(9): 1140-1148. DOI: 10.1177/0284185115618550">10.1177/0284185115618550">10.1177/0284185115618550.
MOHARAMZAD Y, DAVARPANAH A H, YAGHOBI JOYBARI A, et al. Diagnostic performance of apparent diffusion coefficient (ADC) for differentiating endometrial carcinoma from benign lesions: a systematic review and meta-analysis[J]. Abdom Radiol (NY), 2021, 46(3): 1115-1128. DOI: 10.1007/s00261-020-02734-w">10.1007/s00261-020-02734-w">10.1007/s00261-020-02734-w.
SATTA S, DOLCIAMI M, CELLI V, et al. Quantitative diffusion and perfusion MRI in the evaluation of endometrial cancer: validation with histopathological parameters[J/OL]. Br J Radiol, 2021, 94(1125): 20210054 [2023-03-08]. DOI: 10.1259/bjr.20210054">10.1259/bjr.20210054">10.1259/bjr.20210054.
MENG N, FANG T, FENG P Y, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684">10.1002/jmri.27684">10.1002/jmri.27684.
GU L L, LI H M, LIU J, et al. The value of MR diffusion-weighted imaging in differentiating type Ⅰ from type Ⅱ endometrial carcinoma[J]. Radiol Pract, 2019, 34(3): 302-305. DOI: 10.13609/j.cnki.1000-0313.2019.03.012">10.13609/j.cnki.1000-0313.2019.03.012">10.13609/j.cnki.1000-0313.2019.03.012.
YAN B, ZHAO T T, LIANG X F, et al. Can the apparent diffusion coefficient differentiate the grade of endometrioid adenocarcinoma and the histological subtype of endometrial cancer?[J]. Acta Radiol, 2018, 59(3): 363-370. DOI: 10.1177/0284185117716198">10.1177/0284185117716198">10.1177/0284185117716198.
CHEN J Y, FAN W M, GU H L, et al. The value of the apparent diffusion coefficient in differentiating type Ⅱ from type I endometrial carcinoma[J]. Acta Radiol, 2021, 62(7): 959-965. DOI: 10.1177/0284185120944913">10.1177/0284185120944913">10.1177/0284185120944913.
RUTGERS J K. Update on pathology, staging and molecular pathology of endometrial (uterine corpus) adenocarcinoma[J]. Future Oncol, 2015, 11(23): 3207-3218. DOI: 10.2217/fon.15.262">10.2217/fon.15.262">10.2217/fon.15.262.
WANG C Y, SUN M Y, LIU A L, et al. Value of intravoxel incoherent motion MR imaging with biexponential and stretched-exponential models in differentiating types of endometrial cancer[J]. Int J Med Radiol, 2021, 44(5): 561-565. DOI: 10.19300/j.2021.L18611">10.19300/j.2021.L18611">10.19300/j.2021.L18611.
FU F F, MENG N, HUANG Z, et al. Identification of histological features of endometrioid adenocarcinoma based on amide proton transfer-weighted imaging and multimodel diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2022, 12(2): 1311-1323. DOI: 10.21037/qims-21-189">10.21037/qims-21-189">10.21037/qims-21-189.
JIANG J X, ZHAO J L, ZHANG Q, et al. Endometrial carcinoma: diffusion-weighted imaging diagnostic accuracy and correlation with Ki-67 expression[J/OL]. Clin Radiol, 2018, 73(4): 413.e1-413.e6 [2023-03-08]. DOI: 10.1016/j.crad.2017.11.011">10.1016/j.crad.2017.11.011">10.1016/j.crad.2017.11.011.
WANG F, LIU Y, ZHANG Y W, et al. Value of ZOOMit IVIM imaging in endometrial carcinoma for estimating histological grade and Ki-67 expression[J]. Radiol Pract, 2022, 37(3)356-362. DOI: 10.13609/j.cnki.1000-0313.2022.03.013">10.13609/j.cnki.1000-0313.2022.03.013">10.13609/j.cnki.1000-0313.2022.03.013.
JIANG J Q, FU Y G, ZHANG L L, et al. Volumetric analysis of intravoxel incoherent motion diffusion-weighted imaging in preoperative assessment of non-small cell lung cancer[J]. Jpn J Radiol, 2022, 40(9): 903-913. DOI: 10.1007/s11604-022-01279-w">10.1007/s11604-022-01279-w">10.1007/s11604-022-01279-w.
PENG Q, HUANG Y, TANG W, et al. Comparison of parameters for diffusion-weighted intravoxel incoherent motion imaging in lung cancer patients with different histopathological subtypes[J]. Chin J Oncol, 2018, 40(11): 824-828. DOI: 10.3760/cma.j.issn.0253-3766.2018.11.005">10.3760/cma.j.issn.0253-3766.2018.11.005">10.3760/cma.j.issn.0253-3766.2018.11.005.
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846">10.1002/med.21846">10.1002/med.21846.
YE R P, WENG S P, LI Y M, et al. Texture analysis of three-dimensional MRI images may differentiate borderline and malignant epithelial ovarian tumors[J]. Korean J Radiol, 2021, 22(1): 106-117. DOI: 10.3348/kjr.2020.0121">10.3348/kjr.2020.0121">10.3348/kjr.2020.0121.
SHI B, DONG J N, ZHANG L X, et al. A combination analysis of IVIM-DWI biomarkers and T2WI-based texture features for tumor differentiation grade of cervical squamous cell carcinoma[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 2837905 [2023-03-08]. DOI: 10.1155/2022/2837905">10.1155/2022/2837905">10.1155/2022/2837905.
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169">10.1148/radiol.2015151169">10.1148/radiol.2015151169.
LUKANOVIĆ D, MATJAŠIČ M, KOBAL B. Accuracy of preoperative sampling diagnosis for predicting final pathology in patients with endometrial carcinoma: a review[J]. Transl Cancer Res TCR, 2020, 9(12): 7785-7796. DOI: 10.21037/tcr-20-2228">10.21037/tcr-20-2228">10.21037/tcr-20-2228.
ZHANG K Y, QIAN L T, DONG J N, et al. The value of apparent diffusion coefficient value combined with texture analysis in predicting type Ⅰ and type Ⅱ endometrial carcinoma before operation[J]. J Pract Radiol, 2022, 38(1): 80-84. DOI: 10.3969/j.issn.1002-1671.2022.01.020">10.3969/j.issn.1002-1671.2022.01.020">10.3969/j.issn.1002-1671.2022.01.020.
LIU J J, WANG R R, ZHANG C M, et al. The value of multi-sequence MRI radiomics in preoperative prediction of endometrial carcinoma histological grade[J]. J Clin Radiol, 2022, 41(6): 1099-1104. DOI: 10.3969/j.issn.1674-1633.2021.05.020">10.3969/j.issn.1674-1633.2021.05.020">10.3969/j.issn.1674-1633.2021.05.020.
YTRE-HAUGE S, DYBVIK J A, LUNDERVOLD A, et al. Preoperative tumor texture analysis on MRI predicts high-risk disease and reduced survival in endometrial cancer[J]. J Magn Reson Imaging, 2018, 48(6): 1637-1647. DOI: 10.1002/jmri.26184">10.1002/jmri.26184">10.1002/jmri.26184.
YE Z J, NING G, XIE L X, et al. The value of MRI radiomics in predicting risk factors for endometrial cancer[J]. J Pract Radiol, 2022, 38(9): 1099-1104. DOI: 10.3969/j.issn.1002-1671.2022.09.021">10.3969/j.issn.1002-1671.2022.09.021">10.3969/j.issn.1002-1671.2022.09.021.
BEREBY-KAHANE M, DAUTRY R, MATZNER-LOBER E, et al. Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis[J]. Diagn Interv Imaging, 2020, 101(6): 401-411. DOI: 10.1016/j.diii.2020.01.003">10.1016/j.diii.2020.01.003">10.1016/j.diii.2020.01.003.
UENO Y, FORGHANI B, FORGHANI R, et al. Endometrial carcinoma: MR imaging-based texture model for preoperative risk stratification-a preliminary analysis[J]. Radiology, 2017, 284(3): 748-757. DOI: 10.1148/radiol.2017161950">10.1148/radiol.2017161950">10.1148/radiol.2017161950.
SUN Q N, JIANG J X, CAI Z Q, et al. The correlation between dynamic contrast-enhanced MRI parameter histogram and Ki-67 expression in endometrial cancer[J]. J Pract Radiol, 2021, 37(9): 1503-1507. DOI: 10.3969/j.issn.1002-1671.2021.09.024">10.3969/j.issn.1002-1671.2021.09.024">10.3969/j.issn.1002-1671.2021.09.024.
TIAN S F, LIU A L, LIU J H, et al. Preliminary study on correlation between gray level co-occurrence matrix texture analysis based on whole tumor volume measurement ADC image and Ki-67 expression in endometrial cancer[J]. Chin J Magn Reson Imaging, 2019, 10(11): 826-829. DOI: 10.12015/issn.1674-8034.2019.11.006">10.12015/issn.1674-8034.2019.11.006">10.12015/issn.1674-8034.2019.11.006.

PREV Research progress of magnetic resonance imaging in predicting biochemical recurrence of prostate cancer after radical prostatectomy
NEXT Research progress of synthetic magnetic resonance imaging technology in malignant tumors

Tel & Fax: +8610-67113815    E-mail: