Share:
Share this content in WeChat
X
Review
Research progress of brain structural and functional magnetic resonance imaging in patients with chronic pruritus disease
LU Zhikai  NIU Jinliang 

Cite this article as: LU Z K, NIU J L. Research progress of brain structural and functional magnetic resonance imaging in patients with chronic pruritus disease[J]. Chin J Magn Reson Imaging, 2023, 14(5): 150-154. DOI:10.12015/issn.1674-8034.2023.05.026.


[Abstract] Chronic pruritus (CP) refers to itching lasting for 6 weeks or more, which is the most common clinical symptom of various skin diseases and systemic diseases, seriously affecting the patient's sleep, social interaction and work, and reducing the quality of life. Great progress has been made in the research of CP at the peripheral and spinal cord levels, and the central pathophysiological mechanism related to pruritus is the focus of current research. Voxel-based morphometry, diffusion tensor imaging, and functional magnetic resonance imaging are the main methods for quantitative analysis of brain structure and function. This paper mainly reviewed the research status of brain microstructure, abnormal activated regions and brain network changes related to central imaging studies of CP. It provides imaging evidence for guiding diagnosis, monitoring efficacy, targeted drug development and non-drug intervention.
[Keywords] chronic pruritus;brain structure;brain function;functional magnetic resonance imaging;voxel-based morphometry analysis;diffusion tensor imaging

LU Zhikai1   NIU Jinliang2*  

1 CT Room, General Hospital of Taiyuan Iron and Steel (Group) Co., Ltd. (the Sixth Hospital of Shanxi Medical University), Taiyuan 030008, China

2 Department of Imaging, the Second Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: Niu JL, E-mail: sxlscjy@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071898); Research Project of Health Commission of Shanxi Province (No. 2020-1).
Received  2022-11-19
Accepted  2023-04-28
DOI: 10.12015/issn.1674-8034.2023.05.026
Cite this article as: LU Z K, NIU J L. Research progress of brain structural and functional magnetic resonance imaging in patients with chronic pruritus disease[J]. Chin J Magn Reson Imaging, 2023, 14(5): 150-154. DOI:10.12015/issn.1674-8034.2023.05.026.

[1]
MOCHIZUKI H, SCHUT C, NATTKEMPER L A, et al. Brain mechanism of itch in atopic dermatitis and its possible alteration through non-invasive treatments[J]. Allergol Int, 2017, 66(1): 14-21. DOI: 10.1016/j.alit.2016.08.013">10.1016/j.alit.2016.08.013">10.1016/j.alit.2016.08.013.
[2]
NAJAFI P, DUFOR O, SALEM D BEN, et al. Itch processing in the brain[J]. J Eur Acad Dermatol Venereol, 2021, 35(5): 1058-1066. DOI: 10.1111/jdv.17029">10.1111/jdv.17029">10.1111/jdv.17029.
[3]
NAJAFI P, CARRÉ J L, SALEM D BEN, et al. Central mechanisms of itch: a systematic literature review and meta-analysis[J]. J De Neuroradiol, 2020, 47(6): 450-457. DOI: 10.1016/j.neurad.2019.11.005">10.1016/j.neurad.2019.11.005">10.1016/j.neurad.2019.11.005.
[4]
PAPOIU A D, EMERSON N M, PATEL T S, et al. Voxel-based morphometry and arterial spin labeling fMRI reveal neuropathic and neuroplastic features of brain processing of itch in end-stage renal disease[J]. J Neurophysiol, 2014, 112(7): 1729-1738. DOI: 10.1152/jn.00827.2013">10.1152/jn.00827.2013">10.1152/jn.00827.2013.
[5]
NAJAFI P, SALEM D BEN, CARRÉ J L, et al. Functional and anatomical brain connectivity in psoriasis patients and healthy controls: a pilot brain imaging study after exposure to mentally induced itch[J]. J Eur Acad Dermatol Venereol, 2020, 34(11): 2557-2565. DOI: 10.1111/jdv.16441">10.1111/jdv.16441">10.1111/jdv.16441.
[6]
WANG Y M, FANG J L, CUI B N, et al. The functional and structural alterations of the striatum in chronic spontaneous urticaria[J/OL]. Sci Rep, 2018, 8(1): 1725 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/29379058. DOI: 10.1038/s41598-018-19962-2">10.1038/s41598-018-19962-2">10.1038/s41598-018-19962-2.
[7]
STÄNDER S. Classification of itch[J]. Curr Probl Dermatol, 2016, 50: 1-4. DOI: 10.1159/000446009">10.1159/000446009">10.1159/000446009.
[8]
DALGARD F J, SVENSSON Å, HALVORSEN J A, et al. Itch and mental health in dermatological patients across Europe: a cross-sectional study in 13 countries[J]. J Invest Dermatol, 2020, 140(3): 568-573. DOI: 10.1016/j.jid.2019.05.034">10.1016/j.jid.2019.05.034">10.1016/j.jid.2019.05.034.
[9]
KAAZ K, SZEPIETOWSKI J C, MATUSIAK Ł. Sleep quality among adult patients with chronic dermatoses[J]. Postepy Dermatol Alergol, 2019, 36(6): 659-666. DOI: 10.5114/ada.2019.84007">10.5114/ada.2019.84007">10.5114/ada.2019.84007.
[10]
RINALDI G. The itch-scratch cycle: a review of the mechanisms[J]. Dermatol Pract Concept, 2019, 9(2): 90-97. DOI: 10.5826/dpc.0902a03">10.5826/dpc.0902a03">10.5826/dpc.0902a03.
[11]
KAHREMANY S, HOFMANN L, GRUZMAN A, et al. Advances in understanding the initial steps of pruritoceptive itch: how the itch hits the switch[J/OL]. Int J Mol Sci, 2020, 21(14): 4883 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/32664385. DOI: 10.3390/ijms21144883">10.3390/ijms21144883">10.3390/ijms21144883.
[12]
STEINHOFF M, SCHMELZ M, SZABÓ I L, et al. Clinical presentation, management, and pathophysiology of neuropathic itch[J]. Lancet Neurol, 2018, 17(8): 709-720. DOI: 10.1016/S1474-4422(18)30217-5">10.1016/S1474-4422(18)30217-5">10.1016/S1474-4422(18)30217-5.
[13]
CHEN X J, SUN Y G. Central circuit mechanisms of itch[J/OL]. Nat Commun, 2020, 11(1): 3052 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/32546780. DOI: 10.1038/s41467-020-16859-5">10.1038/s41467-020-16859-5">10.1038/s41467-020-16859-5.
[14]
YANG Y, ZHU D M, ZHANG C, et al. Brain structural and functional alterations specific to low sleep efficiency in major depressive disorder[J/OL]. Front Neurosci, 2020, 14: 50 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/32082117. DOI: 10.3389/fnins.2020.00050">10.3389/fnins.2020.00050">10.3389/fnins.2020.00050.
[15]
RECHBERGER S, LI Y, KOPETZKY S J, et al. Automated high-definition MRI processing routine robustly detects longitudinal morphometry changes in alzheimer's disease patients[J/OL]. Front Aging Neurosci, 2022, 14: 832828 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/35747446. DOI: 10.3389/fnagi.2022.832828">10.3389/fnagi.2022.832828">10.3389/fnagi.2022.832828.
[16]
HENSSEN D, KLUIN S J P, KLEEREBEZEM J, et al. White matter changes in the trigeminal spinal tract in chronic migraineurs: an ex vivo study combining ultra-high-field diffusion tensor imaging and polarized light imaging microscopy[J]. Pain, 2022, 163(4): 779-785. DOI: 10.1097/j.pain.0000000000002424">10.1097/j.pain.0000000000002424">10.1097/j.pain.0000000000002424.
[17]
CHENG X, ZHANG P F, WANG J, et al. Research progress of cerebellar structure and functional magnetic resonance imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2022, 13(4): 146-149. DOI: 10.12015/issn.1674-8034.2022.04.032">10.12015/issn.1674-8034.2022.04.032">10.12015/issn.1674-8034.2022.04.032
[18]
ZHAO X Y, ZHANG W, ZHONG W J, et al. Predictive value of alterations of brain structural network topology in early-stage Parkinson's disease with mild cognitive impairment[J]. Chin J Magn Reson Imaging, 2022, 13(3): 12-17, 70. DOI: 10.12015/issn.1674-8034.2022.03.003">10.12015/issn.1674-8034.2022.03.003">10.12015/issn.1674-8034.2022.03.003
[19]
HUANG W J, HU W J, ZHANG P F, et al. Early changes in the white matter microstructure and connectome underlie cognitive deficit and depression symptoms after mild traumatic brain injury[J/OL]. Front Neurol, 2022, 13: 880902 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/35847204. DOI: 10.3389/fneur.2022.880902">10.3389/fneur.2022.880902">10.3389/fneur.2022.880902.
[20]
ZHANG P F, WAN X Y, AI K, et al. Rich-club reorganization and related network disruptions are associated with the symptoms and severity in classic trigeminal neuralgia patients[J/OL]. Neuroimage Clin, 2022, 36: 103160 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/36037660. DOI: 10.1016/j.nicl.2022.103160">10.1016/j.nicl.2022.103160">10.1016/j.nicl.2022.103160.
[21]
MAO C P, WILSON G, CAO J, et al. Abnormal anatomical and functional connectivity of the thalamo-sensorimotor circuit in chronic low back pain: resting-state functional magnetic resonance imaging and diffusion tensor imaging study[J]. Neuroscience, 2022, 487: 143-154. DOI: 10.1016/j.neuroscience.2022.02.001">10.1016/j.neuroscience.2022.02.001">10.1016/j.neuroscience.2022.02.001.
[22]
WAKAIZUMI K, VIGOTSKY A D, JABAKHANJI R, et al. Psychosocial, functional, and emotional correlates of long-term opioid use in patients with chronic back pain: a cross-sectional case-control study[J]. Pain Ther, 2021, 10(1): 691-709. DOI: 10.1007/s40122-021-00257-w">10.1007/s40122-021-00257-w">10.1007/s40122-021-00257-w.
[23]
HUA K L, WANG P J, LAN Z H, et al. Increased left putamen volume correlates with pain in ankylosing spondylitis patients[J/OL]. Front Neurol, 2020, 11: 607646 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/33329370. DOI: 10.3389/fneur.2020.607646">10.3389/fneur.2020.607646">10.3389/fneur.2020.607646.
[24]
TANG Y, REN C H, WANG M H, et al. Altered gray matter volume and functional connectivity in patients with Herpes zoster and postherpetic neuralgia[J/OL]. Brain Res, 2021, 1769: 147608 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/34343527. DOI: 10.1016/j.brainres.2021.147608">10.1016/j.brainres.2021.147608">10.1016/j.brainres.2021.147608.
[25]
LI D, XU H, YANG Q, et al. Cerebral white matter alterations revealed by multiple diffusion metrics in cervical spondylotic patients with pain: a TBSS study[J]. Pain Med, 2022, 23(5): 895-901. DOI: 10.1093/pm/pnab227">10.1093/pm/pnab227">10.1093/pm/pnab227.
[26]
DRZEZGA A, DARSOW U, TREEDE R D, et al. Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies[J]. Pain, 2001, 92(1/2): 295-305. DOI: 10.1016/s0304-3959(01)00271-8">10.1016/s0304-3959(01)00271-8">10.1016/s0304-3959(01)00271-8.
[27]
MANCINI F, ZHANG S Y, SEYMOUR B. Computational and neural mechanisms of statistical pain learning[J/OL]. Nat Commun, 2022, 13(1): 6613 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/36329014. DOI: 10.1038/s41467-022-34283-9">10.1038/s41467-022-34283-9">10.1038/s41467-022-34283-9.
[28]
TU Y H, ZENG F, LAN L, et al. An fMRI-based neural marker for migraine without aura[J/OL]. Neurology, 2020, 94(7): e741-e751 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/31964691. DOI: 10.1212/WNL.0000000000008962">10.1212/WNL.0000000000008962">10.1212/WNL.0000000000008962.
[29]
WENG C J, XIE D H. Research progress of multimodal magnetic resonance imaging in chronic neck and shoulder pain in cervical spondylosis[J]. Chin J Magn Reson Imaging, 2020, 11(3): 238-240. DOI: 10.12015/issn.1674-8034.2020.03.018">10.12015/issn.1674-8034.2020.03.018">10.12015/issn.1674-8034.2020.03.018.
[30]
WANG Y M, GAO D Q, CUI B N, et al. Increased grey matter volume and associated resting-state functional connectivity in chronic spontaneous urticaria: a structural and functional MRI study[J]. J De Neuroradiol, 2021, 48(4): 236-242. DOI: 10.1016/j.neurad.2021.01.011">10.1016/j.neurad.2021.01.011">10.1016/j.neurad.2021.01.011.
[31]
MOCHIZUKI H, PAPOIU A D P, NATTKEMPER L A, et al. Scratching induces overactivity in motor-related regions and reward system in chronic itch patients[J]. J Invest Dermatol, 2015, 135(11): 2814-2823. DOI: 10.1038/jid.2015.223">10.1038/jid.2015.223">10.1038/jid.2015.223.
[32]
ISHIUJI Y, COGHILL R C, PATEL T S, et al. Distinct patterns of brain activity evoked by histamine-induced itch reveal an association with itch intensity and disease severity in atopic dermatitis[J]. Br J Dermatol, 2009, 161(5): 1072-1080. DOI: 10.1111/j.1365-2133.2009.09308.x">10.1111/j.1365-2133.2009.09308.x">10.1111/j.1365-2133.2009.09308.x.
[33]
WANG Y M, FANG J L, SONG P, et al. The dysfunction of the cerebellum and its cerebellum-reward-sensorimotor loops in chronic spontaneous urticaria[J]. Cerebellum, 2018, 17(5): 507-516. DOI: 10.1007/s12311-018-0933-6">10.1007/s12311-018-0933-6">10.1007/s12311-018-0933-6.
[34]
PAPOIU A D, COGHILL R C, KRAFT R A, et al. A tale of two itches. Common features and notable differences in brain activation evoked by cowhage and histamine induced itch[J]. Neuroimage, 2012, 59(4): 3611-3623. DOI: 10.1016/j.neuroimage.2011.10.099">10.1016/j.neuroimage.2011.10.099">10.1016/j.neuroimage.2011.10.099.
[35]
CHON J Y, HAHN Y J, SUNG C H, et al. Amnesia and pain relief after cardiopulmonary resuscitation in a cancer pain patient: a case report[J]. J Korean Med Sci, 2012, 27(6): 707-710. DOI: 10.3346/jkms.2012.27.6.707">10.3346/jkms.2012.27.6.707">10.3346/jkms.2012.27.6.707.
[36]
LEE I S, KIM K, PARK H J, et al. Neural oscillation associated with contagious itch in patients with atopic dermatitis[J/OL]. Brain Sci, 2021, 11(4): 438 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/33805350. DOI: 10.3390/brainsci11040438">10.3390/brainsci11040438">10.3390/brainsci11040438.
[37]
FURLANETTI L, HASEGAWA H, HULSE N, et al. Chronic itch induced by thalamic deep brain stimulation: a case for a central itch centre[J/OL]. J Transl Med, 2021, 19(1): 430 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/34656120. DOI: 10.1186/s12967-021-03110-y">10.1186/s12967-021-03110-y">10.1186/s12967-021-03110-y.
[38]
DESBORDES G, LI A, LOGGIA M L, et al. Evoked itch perception is associated with changes in functional brain connectivity[J]. Neuroimage Clin, 2015, 7: 213-221. DOI: 10.1016/j.nicl.2014.12.002">10.1016/j.nicl.2014.12.002">10.1016/j.nicl.2014.12.002.
[39]
DEHGHAN NAYYERI M, MISSLER M, RITTERBACH R, et al. Altered resting-state functional connectivity of default mode network in brachioradial pruritus[J]. J Eur Acad Dermatol Venereol, 2022, 36(11): 2214-2223. DOI: 10.1111/jdv.18411">10.1111/jdv.18411">10.1111/jdv.18411.
[40]
ZHANG L X, ZOU Z H, YU S Y, et al. Functional connectivity impairment of thalamus-cerebellum-scratching neural circuits in pruritus of chronic spontaneous urticaria[J/OL]. Front Neurosci, 2022, 16: 1026200 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/36340791. DOI: 10.3389/fnins.2022.1026200">10.3389/fnins.2022.1026200">10.3389/fnins.2022.1026200.
[41]
MOSHER V A L, SWAIN M G, PANG J X Q, et al. Primary biliary cholangitis alters functional connections of the brain's deep gray matter[J/OL]. Clin Transl Gastroenterol, 2017, 8(7): e107 [2022-11-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539342. DOI: 10.1038/ctg.2017.34">10.1038/ctg.2017.34">10.1038/ctg.2017.34.
[42]
RAILTON P, DELANEY A J, GOODYEAR B G, et al. Altered activity of pain processing brain regions in association with hip osteoarthritis[J/OL]. Sci Rep, 2022, 12(1): 2791 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/35181675. DOI: 10.1038/s41598-022-06499-8">10.1038/s41598-022-06499-8">10.1038/s41598-022-06499-8.
[43]
WANG Z F, HUANG S, YU X M, et al. Altered thalamic neurotransmitters metabolism and functional connectivity during the development of chronic constriction injury induced neuropathic pain[J/OL]. Biol Res, 2020, 53(1): 36 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/32843088. DOI: 10.1186/s40659-020-00303-5.
[44]
MILLS E P, AKHTER R, DI PIETRO F, et al. Altered brainstem pain modulating circuitry functional connectivity in chronic painful temporomandibular disorder[J]. J Pain, 2021, 22(2): 219-232. DOI: 10.1016/j.jpain.2020.08.002">10.1016/j.jpain.2020.08.002">10.1016/j.jpain.2020.08.002.
[45]
ARMSTRONG A, PUIG L, LANGLEY R, et al. Validation of psychometric properties and development of response criteria for the psoriasis symptoms and signs diary (PSSD): results from a phase 3 clinical trial[J]. J Dermatolog Treat, 2019, 30(1): 27-34. DOI: 10.1080/09546634.2017.1364694">10.1080/09546634.2017.1364694">10.1080/09546634.2017.1364694.
[46]
KOSHY E, LU M T, KUMAR H, et al. Epidemiology, treatment and prevention of Herpes zoster: a comprehensive review[J]. Indian J Dermatol Venereol Leprol, 2018, 84(3): 251-262. DOI: 10.4103/ijdvl.IJDVL_1021_16">10.4103/ijdvl.IJDVL_1021_16">10.4103/ijdvl.IJDVL_1021_16.
[47]
JESCHKE M G, VAN BAAR M E, CHOUDHRY M A, et al. Burn injury[J/OL]. Nat Rev Dis Primers, 2020, 6(1): 11 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/32054846. DOI: 10.1038/s41572-020-0145-5">10.1038/s41572-020-0145-5">10.1038/s41572-020-0145-5
[48]
BELINSKAIA D A, BELINSKAIA M A, BARYGIN O I, et al. Psychotropic drugs for the management of chronic pain and itch[J/OL]. Pharmaceuticals, 2019, 12(2): 99 [2022-11-18]. https://pubmed.ncbi.nlm.nih.gov/31238561. DOI: 10.3390/ph12020099">10.3390/ph12020099">10.3390/ph12020099.
[49]
MOCHIZUKI H, SADATO N, SAITO D N, et al. Neural correlates of perceptual difference between itching and pain: a human fMRI study[J]. Neuroimage, 2007, 36(3): 706-717. DOI: 10.1016/j.neuroimage.2007.04.003">10.1016/j.neuroimage.2007.04.003">10.1016/j.neuroimage.2007.04.003.
[50]
CARL A, ROBERT S. Where is itch represented in the brain, and how does it differ from pain? an activation likelihood estimation meta-analysis of experimentally-induced itch[J]. J Investig Dermatol, 2019, 139(10): 2245-2248.e3. DOI: 10.1016/j.jid.2019.04.007">10.1016/j.jid.2019.04.007">10.1016/j.jid.2019.04.007.
[51]
GOLPANIAN R S, LIPMAN Z, FOURZALI K, et al. Psychiatric comorbidities in non-psychogenic chronic itch, a US-based study[J/OL]. Acta Derm Venereol, 2020, 100(13): adv00169 [2022-11-18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175059. DOI: 10.2340/00015555-3487">10.2340/00015555-3487">10.2340/00015555-3487.

PREV IDEAL-IQ combined with Micro-CT to assess the quantitative correlation of bone marrow fat content and trabecular bone microstructure in rabbit type 1 diabetes
NEXT Research progress of MRI on pathological changes and cognitive impairment of radiation-induced brain injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn