Share this content in WeChat
Clinical Article
Comparison of 3D amide proton transfer imaging and intravoxel incoherent motion imaging in the diagnosis of prostate cancer
HOU Guorui  WANG Chen  LI Leilei  LIN Gang  LI Yijun  ZHENG Jianmin 

Cite this article as: HOU G R, WANG C, LI L L, et al. Comparison of 3D amide proton transfer imaging and intravoxel incoherent motion imaging in the diagnosis of prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 139-144. DOI:10.12015/issn.1674-8034.2023.05.024.

[Abstract] Objective To investigate the value of 3D amide proton transfer (APT) imaging and intravoxel incoherent motion (IVIM) imaging in the diagnosis and risk assessment of prostate cancer (PCa).Materials and Methods A total of 51 patients with prostate disease in our hospital from April 2022 to November 2022 were prospectively included and divided into 27 patients in the benign prostatic hyperplasia (BPH) group and 24 patients in the PCa group according to pathological puncture or surgical results. According to Gleason score (GS), PCa group was divided into low-risk group (≤6) with 6 cases and high-risk group (≥7) with 18 cases. All patients underwent 3.0 T MRI prostatic examination before surgery. The scans included APT, IVIM, diffusion-weighted imaging (DWI) and other sequences. The areas of interest were delineated on the APT and IVIM parameter images, and the APT value, true diffusion coefficient (D), pseudo diffusion coefficient (D*), perfusion fraction (f) and ADC value of the lesions were measured. Independent sample t test was used to compare the differences of various parameters between BPH group and PCa group, and between PCa high-risk group and low-risk group. Receiver operating characteristic (ROC) curve was used to assess the diagnostic efficiency of each parameter. Spearman correlation analysis was used to analyze the correlation between the parameters and GS.Results The D value and ADC value of BPH group were observably higher than that of PCa group, while the APT value was observably lower than that of PCa group, with statistical significance (P<0.05). There was no statistical difference in D* and f values between the two groups. D value and ADC value in PCa low-risk group were significantly higher than those in PCa high-risk group, and APT value was significantly lower than those in PCa high-risk group, with statistical significance (P<0.05). ROC curve analysis showed that the diagnostic specificity of ADC and D values was higher than APT values, while the diagnostic sensitivity of APT and D values was higher than ADC values. Spearman correlation analysis displayed that the ADC value and D value of PCa lesions were significantly negatively correlated with GS (r=-0.691, -0.624; P<0.001); APT value was significantly positively correlated with GS (r=0.455, P=0.026), while D* value and f value were not correlated with GS (P>0.05).Conclusions APT and IVIM imaging have certain value in the differential diagnosis of PCa, APT and IVIM D value can provide help for the pathological grading of PCa, and D value is higher.
[Keywords] prostate cancer;pathological grade;Gleason score;magnetic resonance imaging;amide proton transfer imaging;intravoxel incoherent motion;differential diagnosis

HOU Guorui   WANG Chen   LI Leilei   LIN Gang   LI Yijun   ZHENG Jianmin*  

Department of Radiology, Air Force Military Medical University Xijing Hospital, Xi'an 710032, China

Corresponding author: Zheng JM, E-mail:

Conflicts of interest   None.

Received  2022-12-19
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.05.024
Cite this article as: HOU G R, WANG C, LI L L, et al. Comparison of 3D amide proton transfer imaging and intravoxel incoherent motion imaging in the diagnosis of prostate cancer[J]. Chin J Magn Reson Imaging, 2023, 14(5): 139-144. DOI:10.12015/issn.1674-8034.2023.05.024.

SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1):7-33. DOI: 10.3322/caac.21654">10.3322/caac.21654">10.3322/caac.21654.
CHEN W Q, ZHENG R S, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA A Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338">10.3322/caac.21338">10.3322/caac.21338.
YIN H J, WANG D D, YAN R F, et al. Comparison of diffusion kurtosis imaging and amide proton transfer imaging in the diagnosis and risk assessment of prostate cancer[J/OL]. Front Oncol, 2021, 11: 640906 [2022-12-14]. DOI: 10.3389/fonc.2021.640906">10.3389/fonc.2021.640906">10.3389/fonc.2021.640906.
LI M S, LI W Z. Clinical application and progress of quantitative functional magnetic resonance imaging in prostate cancer[J]. J Central South Univ Med Sci, 2021, 46(4): 414-420. DOI: 10.11817/j.issn.1672-7347.2021.200316">10.11817/j.issn.1672-7347.2021.200316">10.11817/j.issn.1672-7347.2021.200316.
KOGAN F, HARIHARAN H, REDDY R. Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications[J]. Curr Radiol Rep, 2013, 1(2): 102-114. DOI: 10.1007/s40134-013-0010-3">10.1007/s40134-013-0010-3">10.1007/s40134-013-0010-3.
TAKAYAMA Y, NISHIE A, SUGIMOTO M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. MAGMA, 2016, 29(4): 671-679. DOI: 10.1007/s10334-016-0537-4">10.1007/s10334-016-0537-4">10.1007/s10334-016-0537-4.
CUI Y D, LI C M, LIU Y, et al. Differentiation of prostate cancer and benign prostatic hyperplasia: comparisons of the histogram analysis of intravoxel incoherent motion and monoexponential model with in-bore MR-guided biopsy as pathological reference[J]. Abdom Radiol (NY), 2020, 45(10): 3265-3277. DOI: 10.1007/s00261-019-02227-5">10.1007/s00261-019-02227-5">10.1007/s00261-019-02227-5.
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645">10.1002/jmri.26645">10.1002/jmri.26645.
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases[J/OL]. Sci Rep, 2021, 11(1): 5506 [2022-12-14]. DOI: 10.1038/s41598-021-85168-8">10.1038/s41598-021-85168-8">10.1038/s41598-021-85168-8.
ZHANG N, KANG J Y, WANG H L, et al. Differentiation of fibroadenomas versus malignant breast tumors utilizing three-dimensional amide proton transfer weighted magnetic resonance imaging[J]. Clin Imaging, 2022, 81: 15-23. DOI: 10.1016/j.clinimag.2021.09.002">10.1016/j.clinimag.2021.09.002">10.1016/j.clinimag.2021.09.002.
MA C J, TIAN S F, CHEN L H, et al. Quantitative assessment of microsatellite instability in endometrial cancer by T2 mapping combined with mDixon-Quant multiparameter imaging[J]. Chin J Magn Reson Imaging, 2022, 13(8): 48-54. DOI: 10.12015/issn.1674-80342022.08.009">10.12015/issn.1674-80342022.08.009">10.12015/issn.1674-80342022.08.009.
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 783544 [2022-12-14]. DOI: 10.3389/fonc.2021.783544">10.3389/fonc.2021.783544">10.3389/fonc.2021.783544.
WANG F, XU Y, XIANG Y, et al. The feasibility of amide proton transfer imaging at 3 T for bladder cancer: a preliminary study[J]. Clin Radiol, 2022, 77(10): 776-783. DOI: 10.1016/j.crad.2022.07.002">10.1016/j.crad.2022.07.002">10.1016/j.crad.2022.07.002.
JIA G, ABAZA R, WILLIAMS J D, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study[J]. J Magn Reson Imaging, 2011, 33(3): 647-654. DOI: 10.1002/jmri.22480">10.1002/jmri.22480">10.1002/jmri.22480.
YIN H J, YAN R F, REN J P, et al. Diagnostic value of amide proton transfer(APT) magnetic resonance imaging for prostate cancer and the correlation with gleason score[J]. J Clin Radiol, 2019, 38(9): 1698-1702. DOI: 10.13437/j.cnki.jcr.2019.09.028">10.13437/j.cnki.jcr.2019.09.028">10.13437/j.cnki.jcr.2019.09.028.
KORKMAZ C G, KORKMAZ K S, KURYS P, et al. Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer[J]. Oncogene, 2005, 24(31): 4934-4945. DOI: 10.1038/sj.onc.1208677">10.1038/sj.onc.1208677">10.1038/sj.onc.1208677.
LAWRENCE E M, TANG S Y W, BARRETT T, et al. Prostate cancer: performance characteristics of combined T2W and DW-MRI scoring in the setting of template transperineal re-biopsy using MR-TRUS fusion[J]. Eur Radiol, 2014, 24(7): 1497-1505. DOI: 10.1007/s00330-014-3159-0">10.1007/s00330-014-3159-0">10.1007/s00330-014-3159-0.
CHEN Z W, XUE Y N, ZHANG Z, et al. The performance of intravoxel-incoherent motion diffusion-weighted imaging derived hypoxia for the risk stratification of prostate cancer in peripheral zone[J/OL]. Eur J Radiol, 2020, 125: 108865 [2022-12-14]. DOI: 10.1016/j.ejrad.2020.108865">10.1016/j.ejrad.2020.108865">10.1016/j.ejrad.2020.108865.
ZHOU Y, ZHENG J, YANG C, et al. Application of intravoxel incoherent motion diffusion-weighted imaging in hepatocellular carcinoma[J]. World J Gastroenterol, 2022, 28(27): 3334-3345. DOI: 10.3748/wjg.v28.i27.3334">10.3748/wjg.v28.i27.3334">10.3748/wjg.v28.i27.3334.
WANG X, SONG J, ZHOU S F, et al. A comparative study of methods for determining Intravoxel incoherent motion parameters in cervix cancer[J/OL]. Cancer Imaging, 2021, 21(1): 12 [2022-12-14]. DOI: 10.1186/s40644-020-00377-0">10.1186/s40644-020-00377-0">10.1186/s40644-020-00377-0.
XU W J, ZHENG B J, LI H L. Identification of the benignity and malignancy of BI-RADS 4 breast lesions based on a combined quantitative model of dynamic contrast-enhanced MRI and intravoxel incoherent motion[J]. Tomography, 2022, 8(6): 2676-2686. DOI: 10.3390/tomography8060223">10.3390/tomography8060223">10.3390/tomography8060223.
HAN S Y, LI C M, CUI Y D, et al. Intra-voxel incoherent motion diffusion weighted imaging on diagnosis of prostate cancer using whole mount section as A reference standard: a clinical study[J]. Chin J Med Imaging, 2021, 29(4): 379-384. DOI: 10.3969/j.issn.1005-5185.2021.04.023">10.3969/j.issn.1005-5185.2021.04.023">10.3969/j.issn.1005-5185.2021.04.023.
LI C M, CHEN M, WAN B, et al. A comparative study of Gaussian and non-Gaussian diffusion models for differential diagnosis of prostate cancer with in-bore transrectal MR-guided biopsy as a pathological reference[J]. Acta Radiol, 2018, 59(11): 1395-1402. DOI: 10.1177/0284185118760961">10.1177/0284185118760961">10.1177/0284185118760961.
WANG R, ZHONG J M, WANG Y, et al. The value of DKI combined with IVIM in the diagnosis and differential diagnosis of prostate cancer[J]. J Pract Radiol, 2018, 34(9): 1397-1400. DOI: 10.3969/j.issn.1002-1671.2018.09.022">10.3969/j.issn.1002-1671.2018.09.022">10.3969/j.issn.1002-1671.2018.09.022.
WANG M S, LI M, SHI R H, et al. The diagnostic value of intravoxel incoherent motion and ultrahigh b-value diffusion kurtosis imaging in prostate cancer[J/OL]. Chin J Endourol Electron Ed, 2021, 15(3): 187-191 [2022-12-14]. DOI: 10.3877/cma.j.issn.1674-3253.2021.03.003">10.3877/cma.j.issn.1674-3253.2021.03.003">10.3877/cma.j.issn.1674-3253.2021.03.003.
HE N, LI Z P, LI X, et al. Intravoxel incoherent motion diffusion-weighted imaging used to detect prostate cancer and stratify tumor grade: a meta-analysis[J/OL]. Front Oncol, 2020, 10: 1623 [2022-12-14]. DOI: 10.3389/fonc.2020.01623">10.3389/fonc.2020.01623">10.3389/fonc.2020.01623.
LIU Y. Application of MR diffusion kurtosis imaging and voxel incoherent motion imaging in differentiating prostate cancer from prostatic hyperplasia[J]. Radiol Pract, 2019, 34(1)105-108. DOI: 10.13609/j.cnki.1000-0313.2019.01.022">10.13609/j.cnki.1000-0313.2019.01.022">10.13609/j.cnki.1000-0313.2019.01.022.
SHINMOTO H, TAMURA C, SOGA S, et al. An intravoxel incoherent motion diffusion-weighted imaging study of prostate cancer[J]. AJR Am J Roentgenol, 2012, 199(4): W496-W500. DOI: 10.2214/AJR.11.8347">10.2214/AJR.11.8347">10.2214/AJR.11.8347.
GUO Z X, QIN X Y, MU R H, et al. Amide proton transfer could provide more accurate lesion characterization in the transition zone of the prostate[J]. J Magn Reson Imaging, 2022, 56(5): 1311-1319. DOI: 10.1002/jmri.28204">10.1002/jmri.28204">10.1002/jmri.28204.
MENG N, WANG X J, SUN J, et al. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer[J]. Eur Radiol, 2020, 30(10): 5758-5767. DOI: 10.1007/s00330-020-06884-9">10.1007/s00330-020-06884-9">10.1007/s00330-020-06884-9.
CHEN W C, LI L, YAN Z X, et al. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(5): 3286-3296. DOI: 10.1007/s00330-020-07397-1">10.1007/s00330-020-07397-1">10.1007/s00330-020-07397-1.
KAMIMURA K, NAKAJO M, YONEYAMA T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions[J]. Jpn J Radiol, 2019, 37(2): 109-116. DOI: 10.1007/s11604-018-0787-3">10.1007/s11604-018-0787-3">10.1007/s11604-018-0787-3.
GONG L X, XU M, FANG M J, et al. The potential of prostate gland radiomic features in identifying the Gleason score[J/OL]. Comput Biol Med, 2022, 144: 105318 [2022-12-14]. DOI: 10.1016/j.compbiomed.2022.105318">10.1016/j.compbiomed.2022.105318">10.1016/j.compbiomed.2022.105318.
SHAN Y C, CHEN X S, LIU K, et al. Prostate cancer aggressive prediction: preponderant diagnostic performances of intravoxel incoherent motion (IVIM) imaging and diffusion kurtosis imaging (DKI) beyond ADC at 3.0 T scanner with gleason score at final pathology[J]. Abdom Radiol (NY), 2019, 44(10): 3441-3452. DOI: 10.1007/s00261-019-02075-3">10.1007/s00261-019-02075-3">10.1007/s00261-019-02075-3.

PREV Research on the evaluation of the liver function grading for the patients with hepatitis B cirrhosis using T1 mapping based extracellular volume fraction
NEXT IDEAL-IQ combined with Micro-CT to assess the quantitative correlation of bone marrow fat content and trabecular bone microstructure in rabbit type 1 diabetes

Tel & Fax: +8610-67113815    E-mail: