Share this content in WeChat
Clinical Article
Clinical value of arterial spin labeling imaging in the diagnosis of early parotid gland injury in Sjögren's syndrome
ZHANG Gaozhengbo  TIAN Manting  DING Changwei  WANG Baijun 

Cite this article as: ZHANG G Z B, TIAN M T, DING C W, et al. Clinical value of arterial spin labeling imaging in the diagnosis of early parotid gland injury in Sjögren's syndrome[J]. Chin J Magn Reson Imaging, 2023, 14(5): 92-95, 131. DOI:10.12015/issn.1674-8034.2023.05.017.

[Abstract] Objective To investigate the value of arterial spin labeling (ASL) technology in the evaluation of early parotid gland damage in Sjögren's syndrome (SS).Materials and Methods Thirty patients with early SS who were diagnosed for the first time without treatment and no fat deposits in the parotid gland were collected, and 30 healthy volunteers were controlled. Parotid gland ASL imaging was performed, and parotid blood flow was measured. The difference between parotid gland blood flow between early SS patients and healthy volunteers was compared, and the receiver operating characteristic (ROC) curve was plotted to analyze the diagnostic efficacy of parotid blood flow on early SS patients.Results There was no statistically significant difference in BF values between the left and right parotid glands of early SS patients and healthy volunteers (P>0.05). The parotid gland blood flow of early SS patients was significantly higher than that of healthy volunteers [(22.54±1.98) vs. (20.46±2.45) mL/min/100 g, P<0.01)]. The ROC curve evaluation of parotid gland BF value has good diagnostic efficacy for early SS patients. The optimal cutoff value is 20.79 mL/min/100 g, the area under the curve is 0.808, the sensitivity is 80%, and the specificity is 75%.Conclusions ASL technology can evaluate the changes of blood flow in parotid gland in patients with early SS, and has the potential to become a technique for early SS screening.
[Keywords] Sjögren's syndrome;parotid gland;magnetic resonance imaging;arterial spin labeling;microcirculation perfusion;clinical value

ZHANG Gaozhengbo1   TIAN Manting1   DING Changwei1*   WANG Baijun2  

1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China

2 Philips (China) Investment Co., Ltd, Shanghai 200040, China

Corresponding author: Ding CW, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Liaoning Province (No. 20170541045).
Received  2022-12-16
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.05.017
Cite this article as: ZHANG G Z B, TIAN M T, DING C W, et al. Clinical value of arterial spin labeling imaging in the diagnosis of early parotid gland injury in Sjögren's syndrome[J]. Chin J Magn Reson Imaging, 2023, 14(5): 92-95, 131. DOI:10.12015/issn.1674-8034.2023.05.017.

ANDRÉ F, BÖCKLE B C. Sjögren's syndrome[J]. J Dtsch Dermatol Ges, 2022, 20(7): 980-1002. DOI: 10.1111/ddg.14823">10.1111/ddg.14823">10.1111/ddg.14823.
FOX R I, FOX C M, GOTTENBERG J E, et al. Treatment of Sjögren's syndrome: current therapy and future directions[J]. Rheumatology (Oxford), 2021, 60(5): 2066-2074. DOI: 10.1093/rheumatology/kez142">10.1093/rheumatology/kez142">10.1093/rheumatology/kez142.
LIU K H, DING C W. The basic principle of intravoxel incoherent motion imaging and its application progress in Sjogren'ssyndromee[J]. Chin J Magn Reson Imaging, 2022, 13(1): 161-163. DOI: 10.12015/issn.1674-8034.2022.01.038">10.12015/issn.1674-8034.2022.01.038">10.12015/issn.1674-8034.2022.01.038.
LE T H V, KWON S M. Vascular Endothelial Growth Factor Biology and Its Potential as a Therapeutic Target in Rheumatic Diseases[J/OL]. Int J Mol Sci, 2021, 22(10): 5387 [2022-12-15]. DOI: 10.3390/ijms22105387">10.3390/ijms22105387">10.3390/ijms22105387.
KLEIN A, KLEIN J, CHACHAM M, et al. Acinar Atrophy, Fibrosis and Fatty Changes Are Significantly More Common than Sjogren's Syndrome in Minor Salivary Gland Biopsies[J/OL]. Medicina (Kaunas, Lithuania), 2022, 58(2): 175 [2022-12-15]. DOI: 10.3390/medicina58020175.
SISTO M, LISI S, INGRAVALLO G, et al. Neovascularization is prominent in the chronic inflammatory lesions of Sjögren's syndrome[J]. Int J Exp Pathol, 2014, 95(2): 131-137. DOI: 10.1111/iep.12061.
NEGRINI S, EMMI G, GRECO M, et al. Sjögren's syndrome: a systemic autoimmune disease[J]. Clin Exp Med, 2022, 22(1): 9-25. DOI: 10.1007/s10238-021-00728-6.
WANG J, ZHOU L, LIU B. Update on disease pathogenesis, diagnosis, and management of primary Sjögren's syndrome[J]. Int J Rheum Dis, 2020, 23(6): 723-727. DOI: 10.1111/1756-185X.13839.
CHO A, LEE Y R, JEON Y T, et al. Correlations of MR Sialographic Gradings with the Clinical Measures of Sjögren's Syndrome[J]. Laryngoscope, 2023, 133(2): 307-316. DOI: 10.1002/lary.30150.
JI Q S, DING C W. Research progresses of parotid gland MRI in Sjögren's syndrome[J]. Chin J Magn Reson Imaging, 2020, 11(4): 311-314. DOI: 10.12015/issn.1674-8034.2020.04.016.
MARTÍN-NOGUEROL T, KIRSCH CFE, MONTESINOS P, et al. Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications[J]. Neuroradiology, 2021, 63(12): 1969-1983. DOI: 10.1007/s00234-021-02772-1.
KAMI Y N, SUMI M, TAKAGI Y, et al. Arterial Spin Labeling Imaging for the Parotid Glands of Patients with Sjgren's Syndrome[J/OL]. PLoS ONE, 2016, 11(3): e0150680 [2022-12-15]. DOI: 10.1371/journal.pone.0150680.
SHIBOSKI C H, SHIBOSKI S C, SEROR R, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren's syndrome: A consensus and data-driven methodology involving three international patient cohorts[J]. Ann Rheum Dis, 2017, 76(1): 9-16. DOI: 10.1002/art.39859.
SISTO M, LISI S, LOFRUMENTO D D, et al. Sjögren's syndrome pathological neovascularization is regulated by VEGF-A-stimulated TACE-dependent crosstalk between VEGFR2 and NF-κB[J]. Genes Immun, 2012, 13(5): 411-420. DOI: 10.1038/gene.2012.9.
HOČEVAR A, BRUYN G A, TERSLEV L, et al. Development of a new ultrasound scoring system to evaluate glandular inflammation in Sjögren's syndrome: an OMERACT reliability exercise[J]. Rheumatology (Oxford, England), 2022, 61(8): 3341-3350. DOI: 10.1093/rheumatology/keab876.
USTABAOLU F E, KORKMAZ S, LGEN U, et al. Quantitative Assessment of Salivary Gland Parenchymal Vascularization Using Power Doppler Ultrasound and Superb Microvascular Imaging: A Potential Tool in the Diagnosis of Sjögren's Syndrome[J]. Balkan Med J, 2020, 37(4): 203-207. DOI: 10.4274/balkanmedj.galenos.2020.2019.11.91.
ROBERTS C, PARKER G J, ROSE C J, et al. Glandular function in Sjögren syndrome: assessment with dynamic contrast-enhanced MR imaging and tracer kinetic modeling--initial experience[J]. Radiology, 2008, 246(3): 845-853. DOI: 10.1148/radiol.2463070298.
LIU J, LIN C, MINUTI A, et al. Arterial spin labeling compared to dynamic susceptibility contrast MR perfusion imaging for assessment of ischemic penumbra: A systematic review[J]. J Neuroimaging, 2021, 31(6): 1067-1076. DOI: 10.1111/jon.12913.
BAMBACH S, SMITH M, MORRIS P P, et al. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders[J]. J Magn Reson Imaging, 2022, 55(3): 698-719. DOI: 10.1002/jmri.27438.
ECHEVERRIA-CHASCO R, VIDORRETA M, ARAMENDÍA-VIDAURRETA V, et al. Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging[J]. Magn Reson Med, 2021, 85(3): 1507-1521. DOI: 10.1002/mrm.28531.
MA G, XU X Q, ZHU L N, et al. Intravoxel Incoherent Motion Magnetic Resonance Imaging for Assessing Parotid Gland Tumors: Correlation and Comparison with Arterial Spin Labeling Imaging[J]. Korean J Radiol, 2021, 22(2): 243-252. DOI: 10.3348/kjr.2020.0290.
SCHWENZER N F, SCHRAML C, MARTIROSIAN P, et al. MR measurement of blood flow in the parotid gland without contrast medium: a functional study before and after gustatory stimulation[J]. NMR Biomed, 2008, 21(6): 598-605. DOI: 10.1002/nbm.1231.
CHU C, ZHOU N, ZHANG H, et al. Correlation between intravoxel incoherent motion MR parameters and MR nodular grade of parotid glands in patients with Sjgren's syndrome: A pilot study[J]. Eur J Radiol, 2017, 86: 241-247. DOI: 10.1016/j.ejrad.2016.11.021.
FENG Q Q, CHU C, WANG Z W, et al. Application of Intravoxel Incoherent Motion MR Imaging to Diagnose Parotid Gland Abnormalities in Sjogren's Syndrome[J]. J Clin Radiol, 2020, 39(6): 1074-1079. DOI: 10.13437/j.cnki.jcr.2020.06.010.
BRITO-ZERÓN P, RETAMOZO S, FLORES-CHÁVEZ A, et al. Practical diagnostic tips for the Sjögren Clinic: pearls, myths and mistakes[J]. Clin Exp Rheumatol, 2022, 40(12): 2413-2427. DOI: 10.55563/clinexprheumatol/3bvq48.
ZHOU Q Q, ZHANG W, YU Y S, et al. Comparative Study between ZOOMit and Conventional Intravoxel Incoherent Motion MRI for Assessing Parotid Gland Abnormalities in Patients with Early- or Mid-Stage Sjögren's Syndrome[J]. Korean J Radiol, 2022, 23(4): 455-465. DOI: 10.3348/kjr.2021.0695.
WANG H T, ZHAO X K, WANG G H, et al. The research value of quantitative study of parotid gland fat infiltration in early Sjogren's syndrome patients by using 3.0 T MR IDEAL-IQ sequence[J]. Chin J Magn Reson Imaging, 2020, 11(1): 25-28. DOI: 10.12015/issn.1674-8034.2020.01.006.
QIN Q, ALSOP D C, BOLAR D S, et al. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation[J]. Magn Reson Med, 2022, 88(4): 1528-1547. DOI: 10.1002/nbm.4224.
ZHANG Z X, LI S J, WEN B H, et al. The value of multi-echo Dixon technique and T2 mapping for evaluating early parotid gland changes in primary Sjögren′s syndrome[J]. Chin J Radiol, 2021, 55(12): 1282-1286. DOI: 10.3760/cma.j.cn112149-20201228-01341.

PREV The value of DCE and MAP-MRI in predicting the methylation status of MGMT promoter in high-grade glioma
NEXT Development and validation of a predictive model for the diagnosis of breast MRI masses based on the Kaiser score

Tel & Fax: +8610-67113815    E-mail: