Share this content in WeChat
Clinical Article
The value of DCE and MAP-MRI in predicting the methylation status of MGMT promoter in high-grade glioma
YUAN Pengxuan  GAO Yang  WU Qiong  ZHANG Huapeng  WANG Shaoyu 


[Abstract] Objective To investigate the feasibility of predicting the methylation status of O6-methylguanine-DNA-methyltransferase (MGMT) promoter in patients with grade 3 and 4 gliomas by mean apparent propagator-MRI (MAP-MRI) and dynamic contrast enhanced MRI (DCE-MRI).Materials and Methods From June 2018 to January 2022, 14 patients with MGMT promoter methylation and 17 patients with MGMT promoter non-methylated gliomas confirmed by pathology in our hospital were prospectively enrolled. Preoperative routine magnetic resonance imaging, DCE-MRI and MAP-MRI scans were performed.The tumor parenchymal region was manually delineated as region of interest (ROI) and the quantitative parameters of ROI were extracted to measure the parameters of DCE-MRI and MAP-MRI. Pearson correlation analysis was used to analyze the correlation between parameters. Two independent sample t-test was used to compare the diagnostic efficacy of DCE-MRI and MAP-MRI in predicting MGMT promoter methylation status of grade 3 and 4 gliomas.Univariate and multivariate logistic regression models were further established, and receiver operating characteristic (ROC) curves were analyzed and constructed. DeLong test was used to compare the diagnostic effects of DCE-MRI parameters, MAP-MRI parameters and multi-parameter combined model in predicting MGMT methylation.Results The parameters volume transfer constant (Ktrans) and fractional volume of the extravascular-extracellular space (Ve) of DCE-MRI and non-Gaussianity (NG), non-Gaussianityaxial (NGAx), Q-spaceinversevariance (QIV), return to the origin probability (RTOP), return to the axis probability (RTAP) of MAP-MRI were moderately correlated with MGMT promoter methylation, and the differences between the two groups were statistically significant (P<0.05). The area under the ROC curve (AUC) was 0.803, 0.815, 0.807, 0.803, 0.765, 0.790, 0.739, respectively. Multivariate logistic analysis showed that Ve was the best predictor of MGMT promoter methylation, with the highest accuracy and AUC of 0.815 (95% CI: 0.659-0.971), odds ratio (OR) of 0.891 (95% CI: 0.815-0.975). The results of DeLong test showed that the combined multi-parameter model of DCE-MRI and MAP-MRI had the highest diagnostic efficiency in predicting the methylation status of the MGMT promoter in glioma, with an AUC of 0.992.Conclusions DCE-MRI and MAP-MRI are valuable for predicting the methylation status of the MGMT promoter in high-grade gliomas, and the simultaneous application of the two combined diagnoses will help to further improve the diagnostic efficacy.
[Keywords] high-grade glioma;magnetic resonance imaging;dynamic contrast-enhanced-magnetic resonance imaging;mean apparent propagator-magnetic resonance imaging;O6-methylguanine-DNA methyltransferase;molecular subtype

YUAN Pengxuan1   GAO Yang1*   WU Qiong1   ZHANG Huapeng2   WANG Shaoyu2  

1 Department of Imaging Diagnostic, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China

2 SIEMENS Healthineers, Shanghai 201318, China

Corresponding author: Gao Y, E-mail:

Conflicts of interest   None.

Received  2022-09-16
Accepted  2023-05-05
DOI: 10.12015/issn.1674-8034.2023.05.016

RENI M, MAZZA E, ZANON S, et al. Central nervous system gliomas[J]. Crit Rev Oncol Hematol, 2017, 113: 213-234. DOI: 10.1016/j.critrevonc.2017.03.021">10.1016/j.critrevonc.2017.03.021">10.1016/j.critrevonc.2017.03.021.
KAN L K, DRUMMOND K, HUNN M, et al. Potential biomarkers and challenges in glioma diagnosis, therapy and prognosis[J/OL]. BMJ Neurol Open, 2020, 2(2): e000069 [2022-08-10]. DOI: 10.1136/bmjno-2020-000069">10.1136/bmjno-2020-000069">10.1136/bmjno-2020-000069.
MCALEENAN A, KELLY C, SPIGA F, et al. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide[J/OL]. Cochrane Database Syst Rev, 2021, 3(3): CD013316 [2022-08-10]. DOI: 10.1002/14651858.CD013316.pub2">10.1002/14651858.CD013316.pub2">10.1002/14651858.CD013316.pub2.
YU Z, CHEN Y, WANG S, et al. Inhibition of NF-kappa B results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression[J]. Cancer Lett, 2018, 428: 77-89. DOI: 10.1016/j.canlet.2018.04.033">10.1016/j.canlet.2018.04.033">10.1016/j.canlet.2018.04.033.
WELLER M, VAN DEN BENT M, PREUSSER M, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood[J]. Nat Rev Clin Oncol, 2020, 18(3): 170-186. DOI: 10.1038/s41571-020-00447-z">10.1038/s41571-020-00447-z">10.1038/s41571-020-00447-z.
AVRAM A V, SARLLS J E, BARNETT A S, et al. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure[J]. Neuroimage, 2016, 127: 422-434. DOI: 10.1016/j.neuroimage.2015.11.027">10.1016/j.neuroimage.2015.11.027">10.1016/j.neuroimage.2015.11.027.
FICK R H J, WASSERMANN D, CARUYER E, et al. MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data[J]. Neuroimage, 2016: 365-385. DOI: 10.1016/j.neuroimage.2016.03.046">10.1016/j.neuroimage.2016.03.046">10.1016/j.neuroimage.2016.03.046.
SU C Q, LU S S, HAN Q Y, et al. Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading[J]. Acta Radiol, 2019, 60(6): 777-787. DOI: 10.1177/0284185118801127">10.1177/0284185118801127">10.1177/0284185118801127.
HILARIO A, HERNANDEZ-LAIN A, SEPULVEDA J M, et al. Perfusion MRI grading diffuse gliomas: Impact of permeability parameters on molecular biomarkers and survival[J]. Neurocirugía, 2019, 30(1): 11-18. DOI: 10.1016/j.neucir.2018.06.004">10.1016/j.neucir.2018.06.004">10.1016/j.neucir.2018.06.004.
SUN Y, SU C, DENG K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J/OL]. Eur Radiol, 2022, 32(6): 3744-3754 [2022-08-10]. DOI: 10.1007/s00330-021-08522-4">10.1007/s00330-021-08522-4">10.1007/s00330-021-08522-4.
WANG P, WENG L, XIE S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J/OL]. Eur J Radiol, 2021, 138: 109622 [2022-08-10]. DOI: 10.1016/j.ejrad.2021.109622">10.1016/j.ejrad.2021.109622">10.1016/j.ejrad.2021.109622.
ERIKSSON M, KAHARI J, VESTMAN A, et al. Improved treatment of glioblastoma-changes in survival over two decades at a single regional Centre[J]. Acta Oncol, 2019: 1-8. DOI: 10.1080/0284186X.2019.1571278">10.1080/0284186X.2019.1571278">10.1080/0284186X.2019.1571278.
SZYLBERG M, SOKAL P, ŚLEDZIŃSKA P, et al. MGMT Promoter Methylation as a Prognostic Factor in Primary Glioblastoma: A Single-Institution Observational Study[J]. Biomedicines, 2022, 10(8): 2030. DOI: 10.3390/biomedicines10082030">10.3390/biomedicines10082030">10.3390/biomedicines10082030.
CHANG S, QIONG W, XIAOLING Y, et al. The TERT promoter mutation status and MGMT promoter methylation status, combined with dichotomized MRI-derived and clinical features, predict adult primary glioblastoma survival[J]. Cancer Med, 2018, 7(8): 3704-3712. DOI: 10.1002/cam4.1666">10.1002/cam4.1666">10.1002/cam4.1666.
DELLA MONICA R, CUOMO M, BUONAIUTO M, et al. MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme[J]. Int J Mol Sci, 2022, 23(13): 7148. DOI: 10.3390/ijms23137148">10.3390/ijms23137148">10.3390/ijms23137148.
HAQUE W, TEH C, BUTLER E B, et al. Prognostic and predictive impact of MGMT promoter methylation status in high risk grade Ⅱ glioma[J]. J Neurooncol, 2022, 157(1):137-146. DOI: 10.1007/s11060-022-03955-3">10.1007/s11060-022-03955-3">10.1007/s11060-022-03955-3.
POHCHOO S, DING W J H, AZLINA A A, et al. Quantitative magnetic resonance imaging and radiogenomic biomarkers for gliomas characterisation: a systematic review[J]. Br J Radiol, 2018, 91: 20170930. DOI: 10.1259/bjr.20170930">10.1259/bjr.20170930">10.1259/bjr.20170930.
EL-SEROUGY L, ABDEL RAZEK A A, EZZAT A, et al. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas[J]. Neuroradiol J, 2016, 29(5): 400-407. DOI: 10.1177/1971400916665382">10.1177/1971400916665382">10.1177/1971400916665382.
RAJA R, SINHA N, SAINI J, et al. Assessment of tissue heterogeneity using diffusion tensor and diffusion kurtosis imaging for grading gliomas[J]. Neuroradiology, 2016, 58(12): 1-15. DOI: 10.1007/s00234-016-1758-y">10.1007/s00234-016-1758-y">10.1007/s00234-016-1758-y.
ZHANG J, CHEN X, CHEN D, et al. Grading and proliferation assessment of diffuse astrocytic tumors with monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging and diffusion kurtosis imaging[J]. Eur J Radiol, 2018, 109: 188-195. DOI: 10.1016/j.ejrad.2018.11.003">10.1016/j.ejrad.2018.11.003">10.1016/j.ejrad.2018.11.003.
ZENG Q, DONG F, SHI F, et al. Apparent diffusion coefficient maps obtained from high b value diffusion-weighted imaging in the preoperative evaluation of gliomas at 3T: comparison with standard b value diffusion-weighted imaging[J]. Eur Radiol, 2017, 27(12): 5309-5315. DOI: 10.1007/s00330-017-4910-0">10.1007/s00330-017-4910-0">10.1007/s00330-017-4910-0.
ÖZARSLAN E, KOAY C G , SHEPHERD T M, et al. Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure[J]. NeuroImage, 2013, 78: 16-32. DOI: 10.1016/j.neuroimage.2013.04.016">10.1016/j.neuroimage.2013.04.016">10.1016/j.neuroimage.2013.04.016.
MOON W J, CHOI J W, ROH H G, et al. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging[J]. Neuroradiol, 2012, 54: 555-563. DOI: 10.1007/s00234-011-0947-y">10.1007/s00234-011-0947-y">10.1007/s00234-011-0947-y.
ILIADIS G, KOTOULA V, CHATZISOTIRIOU A, et al. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis[J]. BMC Cancer, 2012, 12: 3. DOI: 10.1186/1471-2407-12-3">10.1186/1471-2407-12-3">10.1186/1471-2407-12-3.
OSTROM Q T, CIOFFI G, GITTLEMAN H, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016[J]. Neuro Oncol, 2019, 21(Suppl 5): v1-v100. DOI: 10.1093/neuonc/noz150">10.1093/neuonc/noz150">10.1093/neuonc/noz150.
YOU S H, CHOI S H, KIM T M, et al. Differentiation of High-Grade from Low-Grade Astrocytoma: Improvement in Diagnostic Accuracy and Reliability of Pharmacokinetic Parameters from DCE MR Imaging by Using Arterial Input Functions Obtained from DSC MR Imaging[J]. Radiology, 2018, 286(3): 981-991. DOI: 10.1148/radiol.2017170764">10.1148/radiol.2017170764">10.1148/radiol.2017170764.
ZHANG H W, LYU G W, HE W J, et al. DSC and DCE Histogram Analyses of Glioma Biomarkers, Including IDH, MGMT, and TERT, on Differentiation and Survival[J/OL]. Acad Radiol, 2020, 27(12): e263-e271 [2022-08-10]. DOI: 10.1016/j.acra.2019.12.010">10.1016/j.acra.2019.12.010">10.1016/j.acra.2019.12.010.
AHN S S, SHIN N Y, CHANG J H, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging[J]. J Neurosurg, 2014, 121(2): 367-373. DOI: 10.3171/2014.5.JNS132279">10.3171/2014.5.JNS132279">10.3171/2014.5.JNS132279.
WOJCIECH S, BURLEY T A, GABRIELA K M, et al. Diagnostic and Therapeutic Biomarkers in Glioblastoma: Current Status and Future Perspectives[J]. Biomed Res Int, 2017, 2017: 8013575. DOI: 10.1155/2017/8013575">10.1155/2017/8013575">10.1155/2017/8013575.
KIM M, YOO J, CHANG J H, et al. Association of MGMT Gene Promoter Methylation With Clinicopathological Parameters in Patients With Wild-type IDH Glioblastoma[J]. Anticancer Res, 2022, 42(1): 335-341. DOI: 10.21873/anticanres.15490">10.21873/anticanres.15490">10.21873/anticanres.15490.
CHAI R, LI G, LIU Y, et al. Predictive value of MGMT promoter methylation on the survival of TMZ treated IDH-mutant glioblastoma[J]. Cancer Biol Med, 2021, 18(1): 272-282. DOI: 10.20892/j.issn.2095-3941.2020.0179">10.20892/j.issn.2095-3941.2020.0179">10.20892/j.issn.2095-3941.2020.0179.
LAM K, ELDRED B S C, KEVAN B, et al. Prognostic value of O6-methylguanine-DNA methyltransferase methylation in isocitrate dehydrogenase mutant gliomas[J/OL]. Neurooncol Adv, 2022, 4(1): vdac030 [2022-08-10]. DOI: 10.1093/noajnl/vdac030">10.1093/noajnl/vdac030">10.1093/noajnl/vdac030.
LU J, LI X, LI H. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas[J]. Magn Reson Imaging, 2021, 83: 189-195. DOI: 10.1016/j.mri.2021.09.005">10.1016/j.mri.2021.09.005">10.1016/j.mri.2021.09.005.

PREV CE HRVW MRI to evaluate diagnostic difference of gadolinium-based contrast agents in intracranial plaque
NEXT Clinical value of arterial spin labeling imaging in the diagnosis of early parotid gland injury in Sjögren,s syndrome

Tel & Fax: +8610-67113815    E-mail: