Share this content in WeChat
Clinical Article
CE HRVW MRI to evaluate diagnostic difference of gadolinium-based contrast agents in intracranial plaque
LI Yanan  SHI Ying  WU Haishan  ZHANG Hongxia  LIU Pengfei 

Cite this article as: LI Y N, SHI Y, WU H S, et al. CE HRVW MRI to evaluate diagnostic difference of gadolinium-based contrast agents in intracranial plaque[J]. Chin J Magn Reson Imaging, 2023, 14(5): 79-84. DOI:10.12015/issn.1674-8034.2023.05.015.

[Abstract] Objective To evaluate the diagnostic efficacy of contrast-enhanced high-resolution vessel wall MRI (CE HRVW MRI) with different gadolinium-based contrast agents (GBCA) in intracranial atherosclerotic plaque quantitatively.Materials and Methods One hundred and five cases of patient with intracranial atherosclerotic disease (ICAD) who underwent CE HRVW MRI examination were analyzed retrospectively and divided into gadobutrol group and Gd-DTPA group. Each enhanced plaque was classified into grade 0, 1 or 2. An objective analysis for each grade had been conducted via comparing the parameters, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast enhancement (CE), contrast-to-brain ratio (CBR), and enhancement index (ER) between the two groups.Results One hundred and fifty one plaques were analyzed, in which 69 plaques from 49 patients were detected in gadobutrol group and 82 plaques from 56 patients were detected in Gd-DTPA group. The image quality-related parameters of the three grades between the two groups were compared. The objective evaluation showed that in grade 2 SNR post-contrast [(168.02±26.89) vs. (155.76±18.71)], CNR [(76.14±19.10) vs. (61.83±14.88)], CE [(55.31±19.53) vs. (39.95±15.65)], CBR [(0.85±0.23) vs. (0.68±0.20)], and ER [(117.54±0.34) vs. (101.18±0.18)] were all higher when using gadobutrol compared with Gd-DTPA in CE HR-MRI (P<0.05). But above parameters of the grade 0 and 1 demonstrated no statistical difference (P>0.05).Conclusions The diagnostic efficacy of CE HRVW MRI with gadobutrol in intracranial atherosclerotic plaque was superior to that with Gd-DTPA in grade 2 of plaque enhancement.
[Keywords] atherosclerotic;magnetic resonance imaging;vessel wall imaging;gadolinium-based contrast agent;intracranial artery;plaque

LI Yanan   SHI Ying   WU Haishan   ZHANG Hongxia   LIU Pengfei*  

Department of Magnetic Resonance, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China

Corresponding author: Liu PF, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Health Commission of Heilongjiang Province (No. 2020-099); Beiiing New Health Industry Development Foundation.
Received  2022-11-25
Accepted  2023-05-06
DOI: 10.12015/issn.1674-8034.2023.05.015
Cite this article as: LI Y N, SHI Y, WU H S, et al. CE HRVW MRI to evaluate diagnostic difference of gadolinium-based contrast agents in intracranial plaque[J]. Chin J Magn Reson Imaging, 2023, 14(5): 79-84. DOI:10.12015/issn.1674-8034.2023.05.015.

WANG Y, ZHAO X, LIU L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Stroke, 2014, 45(3): 663-669. DOI: 10.1161/STROKEAHA.113.003508">10.1161/STROKEAHA.113.003508">10.1161/STROKEAHA.113.003508.
LENG X, WONG K S, LEUNG T W. The contemporary management of intracranial atherosclerotic disease[J]. Expert Rev Neurother, 2016, 16(6): 701-709. DOI: 10.1080/14737175.2016.1179111">10.1080/14737175.2016.1179111">10.1080/14737175.2016.1179111.
LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review[J/OL]. Ann Transl Med, 2022, 10: 714 [2022-11-24]. DOI: 10.21037/atm-22-2364">10.21037/atm-22-2364">10.21037/atm-22-2364.
KIM D K, VERDOORN J T, GUNDERSON T M, et al. Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries[J]. J Neuroradiol, 2020, 47(4): 266-271.
ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3605-3613. DOI: 10.1007/s10072-021-05457-y">10.1007/s10072-021-05457-y">10.1007/s10072-021-05457-y.
KHAIRNAR S, MORE N, MOUNIKA C, et al. Advances in Contrast Agents for Contrast-Enhanced Magnetic Resonance Imaging[J]. J Med Imaging Radiat Sci, 2019, 50(4): 575-589. DOI: 10.1016/j.jmir.2019.09.006">10.1016/j.jmir.2019.09.006">10.1016/j.jmir.2019.09.006.
QIN X X, JIN C L, WANG M F, et al. Clinical application evaluation of gadolinium-based contrast agent[J]. Clin Med J, 2021, 19(9): 34-40. DOI: 10.3969/j.issn.1672-3384.2021.09.007">10.3969/j.issn.1672-3384.2021.09.007">10.3969/j.issn.1672-3384.2021.09.007.
FAN B, LI M, WANG X, et al. Diagnostic value of gadobutrol versus gadopentetate dimeglumine in enhanced MRI of brain metastases[J]. J Magn Reson Imaging, 2017, 45(6): 1827-1834. DOI: 10.1002/jmri.25491">10.1002/jmri.25491">10.1002/jmri.25491.
LIU X, LI Z, ZHANG W, et al. Gadobutrol Precedes Gd-DTPA in Abdominal Contrast-Enhanced MRA and MRI: A Prospective, Multicenter, Intraindividual Study[J/OL]. Contrast Media Mol Imaging, 2019, 2019: 9738464 [2022-11-24]. DOI: 10.1155/2019/9738464">10.1155/2019/9738464">10.1155/2019/9738464.
FINK C, BOCK M, KIESSLING F, et al. Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1.0 M gadobutrol vs. 0.5 M gadopentetate dimeglumine[J]. J Magn Reson Imaging, 2004, 19(2): 202-208. DOI: 10.1002/jmri.10452">10.1002/jmri.10452">10.1002/jmri.10452.
FINK C, PUDERBACH M, LEY S, et al. Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso[J]. J Magn Reson Imaging, 2005, 22(2): 286-290. DOI: 10.1002/jmri.20381">10.1002/jmri.20381">10.1002/jmri.20381.
ENDRIKAT J, ANZALONE N. Gadobutrol in India-A Comprehensive Review of Safety and Efficacy[J/OL]. Magn Reson Insights, 2017, 10: 1178623X17730048 [2022-11-24]. DOI: 10.1177/1178623X17730048">10.1177/1178623X17730048">10.1177/1178623X17730048.
THOMSEN H S. Generic gadolinium-based contrast agents: the future?[J]. Acta Radiol, 2017, 58(11): 1285-1287. DOI: 10.1177/0284185117719576">10.1177/0284185117719576">10.1177/0284185117719576.
ZHOU Y X, CUI Y Z, NAN D, et al. The reasearch of basilar artery based on high-resolution magnetic resonance imaging in patients with posterior circulation ischemic attack[J]. Chin J Magn Reson Imaging, 2021, 12(2): 15-18, 23. DOI: 10.12015/issn.1674-8034.2021.02.004">10.12015/issn.1674-8034.2021.02.004">10.12015/issn.1674-8034.2021.02.004.
QIAO Y, ZEILER S R, MIRBAGHERI S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images[J]. Radiology, 2014, 271(2): 534-542. DOI: 10.1148/radiol.13122812">10.1148/radiol.13122812">10.1148/radiol.13122812.
QIAO Y, STEINMAN D A, QIN Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla[J]. J Magn Reson Imaging, 2011, 34: 22-30. DOI: 10.1002/jmri.22592">10.1002/jmri.22592">10.1002/jmri.22592.
SUN B, WANG L, LI X, et al. Intracranial Atherosclerotic Plaque Characteristics and Burden Associated with Recurrent Acute Stroke: A 3D Quantitative Vessel Wall MRI Study[J/OL]. Front Aging Neurosci, 2021, 13: 706544 [2022-11-24]. DOI: 10.3389/fnagi.2021.706544">10.3389/fnagi.2021.706544">10.3389/fnagi.2021.706544.
AMELI R, EKER O, SIGOVAN M, et al. Multifocal arterial wall contrast-enhancement in ischemic stroke: A mirror of systemic inflammatory response in acute stroke[J]. Rev Neurol (Paris), 2020, 176(3): 194-199. DOI: 10.1016/j.neurol.2019.07.022">10.1016/j.neurol.2019.07.022">10.1016/j.neurol.2019.07.022.
ANDELOVIC K, WINTER P, JAKOB P M, et al. Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging[J/OL]. Biomedicines, 2021, 9(2): 185 [2022-11-24]. DOI: 10.3390/biomedicines9020185">10.3390/biomedicines9020185">10.3390/biomedicines9020185.
YANG H, JI C, WANG H, et al. Characterisation of symptomatic intracranial plaque without substantial stenosis using high-resolution vessel wall MRI[J/OL]. Clin Radiol, 2021, 76: 392.e21-392.e26 [2022-11-24]. DOI: 10.1016/j.crad.2021.01.008.
LU Y, YE M F, ZHAO J J, et al. Gadolinium enhancement of atherosclerotic plaque in the intracranial artery[J]. Neurol Res, 2021, 43(12): 1040-1049. DOI: 10.1080/01616412.2021.1949682">10.1080/01616412.2021.1949682">10.1080/01616412.2021.1949682.
YANG W J, ABRIGO J, SOO Y O, et al. Regression of Plaque Enhancement Within Symptomatic Middle Cerebral Artery Atherosclerosis: A High-Resolution MRI Study[J/OL]. Front Neurol, 2020, 11: 755 [2022-11-24]. DOI: 10.3389/fneur.2020.00755">10.3389/fneur.2020.00755">10.3389/fneur.2020.00755.
HUANG J, JIAO S, ZHAO X, et al. Characteristics of patients with enhancing intracranial atherosclerosis and association between plaque enhancement and recent cerebrovascular ischemic events: a high-resolution magnetic resonance imaging study[J]. Acta Radiol, 2019, 60(10): 1301-1307. DOI: 10.1177/0284185118822645">10.1177/0284185118822645">10.1177/0284185118822645.
RADHAKRISHNAN R, AHMED S, TILDEN J C, et al. Comparison of normal facial nerve enhancement at 3T MRI using gadobutrol and gadopentetate dimeglumine[J]. Neuroradiol, 2017, 30(6): 554-560. DOI: 10.1177/1971400917719714">10.1177/1971400917719714">10.1177/1971400917719714.
KAWASAKI K, OKUBO T, NAGATARI T, et al. Clinical significance of gadobutrol in magnetic resonance imaging for the detection of myocardial infarction: matched-pair cohort study to compare with gadopentetate dimeglumine at standard dose[J]. Radiol Phys Technol, 2020, 13(3): 306-311. DOI: 10.1007/s12194-020-00569-0">10.1007/s12194-020-00569-0">10.1007/s12194-020-00569-0.
CHEN G Y, TANG H H, SUN J Y, et al. Application of High Concentration Magnetic Resonance Contrast Agent in Abdominal MRA[J]. Sichuan Med J, 2018, 39(11): 1210-1214. DOI: 10.16252/j.cnki.issn1004-0501-2018.11.002">10.16252/j.cnki.issn1004-0501-2018.11.002">10.16252/j.cnki.issn1004-0501-2018.11.002.
PRINCE M R, LEE H G, LEE C H, et al. Safety of gadobutrol in over 23,000 patients: the GARDIAN study, a global multicentre, prospective, non-interventional study[J]. Eur Radiol, 2017, 27(1): 286-295. DOI: 10.1007/s00330-016-4268-8">10.1007/s00330-016-4268-8">10.1007/s00330-016-4268-8.
SCOTT L J. Gadobutrol: A Review in Contrast-Enhanced MRI and MRA[J]. Clin Drug Investig, 2018, 38(8): 773-784. DOI: 10.1007/s40261-018-0674-9">10.1007/s40261-018-0674-9">10.1007/s40261-018-0674-9.
XIA J, YIN A, LI Z, et al. Quantitative Analysis of Lipid-Rich Necrotic Core in Carotid Atherosclerotic Plaques by In Vivo Magnetic Resonance Imaging and Clinical Outcomes[J]. Med Sci Monit, 2017, 23: 2745-2750. DOI: 10.12659/msm.901864">10.12659/msm.901864">10.12659/msm.901864.
LIN R, CHEN S, LIU G, et al. Association Between Carotid Atherosclerotic Plaque Calcification and Intraplaque Hemorrhage: A Magnetic Resonance Imaging Study[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1228-1233. DOI: 10.1161/ATVBAHA.116.308360">10.1161/ATVBAHA.116.308360">10.1161/ATVBAHA.116.308360.
XU W. High-resolution MRI of intracranial large artery diseases: how to use it in clinical practice?[J]. Stroke Vasc Neurol, 2019, 4(2): 102-104. DOI: 10.1136/svn-2018-000210">10.1136/svn-2018-000210">10.1136/svn-2018-000210.

PREV Study on resting-state functional magnetic resonance imaging in plateau Tibetan with type 2 diabetes mellitus: Amplitude of low-frequency fluctuations and fractional amplitude of low-frequency fluctuations
NEXT The value of DCE and MAP-MRI in predicting the methylation status of MGMT promoter in high-grade glioma

Tel & Fax: +8610-67113815    E-mail: