Share:
Share this content in WeChat
X
Special Focus
Clinical feasibility of 2D FSE sequences of the knee MRI protocol using deep-learning image reconstruction
WU Xiaxia  LU Xuefang  LIU Changsheng  QUAN Guangnan  LIU Weiyin  ZHA Yunfei 

Cite this article as: WU X X, LU X F, LIU C S, et al. Clinical feasibility of 2D FSE sequences of the knee MRI protocol using deep-learning image reconstruction[J]. Chin J Magn Reson Imaging, 2023, 14(5): 53-59. DOI:10.12015/issn.1674-8034.2023.05.011.


[Abstract] Objective To propose a rapid knee imaging based on two-dimensional fast spin echo sequence and examined the reliability and diagnostic performance of deep learning-based reconstruction images on knee joint pathology via comparison of images with and without deep learning reconstruction algorithm (DLR).Materials and Methods A total of 92 patients, a protocol including accelerated two dimensional (2D) fast spin echo (FSE) sequences with autocalibrating reconstruction for cartesian sampling (ARC) as a kind of parallel imaging were enrolled in this prospective study. All MR data was reconstructed with and without DLR as original images of FSE (FSEO) and deep learning reconstruction images of FSE (FSEDL), respectively. Two radiologists subjectively assessed images at the aspects of overall image quality, sharpness and diagnostic confidence using a Likert scale (1-5, 5=best), and also objectively evaluated signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). SNR of femoral marrow, cartilage, synovial fluid, infrapatellar fat pad, anterior cruciate ligament and CNR of cartilage/synovial fluid were measured on proton density weighted imaging (PDWI) sequence and T1 weighted imaging (T1WI) sequence of the knee. Inter-observer and intra-observer subjective score consistency were also computed.Results The overall image quality, sharpness and diagnostic confidence for FSEDL were higher compared to FSE0, showing significantly improved sharpness (P<0.05). Inter- and intra-reader agreement was substantial to almost perfect (ICC: 0.710-0.898). For objective evaluation, SNR and CNR of PDWIDL and T1WIDL images were significantly higher than that of PDWI0 and T1WI0 images (P<0.05). Two radiologists respectively assessed the sequences regarding structural abnormalities of the knee based on FSE0 and FSEDL. Inter- and intra-reader agreement were excellent consistent (κ: 0.954-1.000) for the detection of internal derangement. Intra-reader agreement was substantial to almost perfect (κ=0.769, 0.771) for the assessment of cartilage defects and almost perfect (κ: 0.944-1.000) for the assessment of meniscal, ligament, bone marrow, syn-ovial fluid. There were no detection differences of structural abnormalities between FSEDL and FSE0.Conclusions DLR can be used for knee joint PI ARC technology, which can improve the image quality and ensure the clinical diagnosis efficiency at the same time to complete the image acquisition within 5 min, suitable for clinical patients with various knee joint diseases.
[Keywords] knee joint;convolutional neural network;deep learning;image reconstruction;parallel imaging;magnetic resonance imaging

WU Xiaxia1   LU Xuefang1   LIU Changsheng1   QUAN Guangnan2   LIU Weiyin2   ZHA Yunfei1*  

1 Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

2 GE Healthcare, Beijing 100176, China

Corresponding author: Zha YF, E-mail: zhayunfei999@126.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Xiangyang Medical and Health Field Science and Technology Project (No. 2022YL31B).
Received  2022-10-12
Accepted  2023-01-12
DOI: 10.12015/issn.1674-8034.2023.05.011
Cite this article as: WU X X, LU X F, LIU C S, et al. Clinical feasibility of 2D FSE sequences of the knee MRI protocol using deep-learning image reconstruction[J]. Chin J Magn Reson Imaging, 2023, 14(5): 53-59. DOI:10.12015/issn.1674-8034.2023.05.011.

[1]
SCHNAITER J W, ROEMER F, MCKENNA-KUETTNER A, et al. Diagnostic accuracy of an MRI protocol of the knee accelerated through parallel imaging in correlation to arthroscopy[J]. Rofo, 2018, 190(3): 265-272. DOI: 10.1055/s-0043-119038">10.1055/s-0043-119038">10.1055/s-0043-119038.
[2]
CHAUDHARI A S, STEVENS K J, SVEINSSON B, et al. Combined 5-minute double-echo in steady-state with separated echoes and 2-minute proton-density-weighted 2D FSE sequence for comprehensive whole-joint knee MRI assessment[J/OL]. J Magn Reson Imaging, 2019, 49(7): e183-e194 [2022-10-04]. http://pubs.rsna.org/doi/10.1148/ryai.2021200278. DOI: 10.1002/jmri.26582">10.1002/jmri.26582">10.1002/jmri.26582.
[3]
HERRMANN J, KELLER G, GASSENMAIER S, et al. Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol[J]. Eur Radiol, 2022, 32(9): 6215-6229. DOI: 10.1007/s00330-022-08753-z">10.1007/s00330-022-08753-z">10.1007/s00330-022-08753-z.
[4]
FRITZ J, FRITZ B, THAWAIT G G, et al. Three-dimensional caipirinha space tse for 5-minute high-resolution MRI of the knee[J]. Invest Radiol, 2016, 51(10): 609-617. DOI: 10.1097/RLI.0000000000000287">10.1097/RLI.0000000000000287">10.1097/RLI.0000000000000287.
[5]
CHAUDHARI A S, GRISSOM M J, FANG Z N, et al. Diagnostic accuracy of quantitative multicontrast 5-minute knee MRI using prospective artificial intelligence image quality enhancement[J]. AJR Am J Roentgenol, 2021, 216(6): 1614-1625. DOI: 10.2214/AJR.20.24172">10.2214/AJR.20.24172">10.2214/AJR.20.24172.
[6]
PAN K, LIU Q Q, TANG L L, et al. Study on acceleration efficiency and image quality of artificial intelligence compressed sensing and compressed sensing in knee MRI[J]. Chin J Magn Reson Imaging, 2022, 13(5): 94-98. DOI: 10.12015/issn.1674-8034.2022.05.017">10.12015/issn.1674-8034.2022.05.017">10.12015/issn.1674-8034.2022.05.017.
[7]
DESHMANE A, GULANI V, GRISWOLD M A, et al. Parallel MR imaging[J]. J Magn Reson Imaging, 2012, 36(1): 55-72. DOI: 10.1002/jmri.23639">10.1002/jmri.23639">10.1002/jmri.23639.
[8]
FRITZ J, GUGGENBERGER R, DEL GRANDE F. Rapid musculoskeletal MRI in 2021: clinical application of advanced accelerated techniques[J]. AJR Am J Roentgenol, 2021, 216(3): 718-733. DOI: 10.2214/AJR.20.22902">10.2214/AJR.20.22902">10.2214/AJR.20.22902.
[9]
KOCH K M, SHERAFATI M, ARPINAR V E, et al. Analysis and evaluation of a deep learning reconstruction approach with denoising for orthopedic MRI[J/OL]. Radiol Artif Intell, 2021, 3(6): e200278 [2022-10-04]. https://link.springer.com/10.1007/s00330-022-09151-1. DOI: 10.1148/ryai.2021200278">10.1148/ryai.2021200278">10.1148/ryai.2021200278.
[10]
QIU D F, ZHANG S X, LIU Y, et al. Super-resolution reconstruction of knee magnetic resonance imaging based on deep learning[J]. Comput Methods Programs Biomed, 2020, 187: 105059. DOI: 10.1016/j.cmpb.2019.105059">10.1016/j.cmpb.2019.105059">10.1016/j.cmpb.2019.105059.
[11]
HERRMANN J, KOERZDOERFER G, NICKEL D, et al. Feasibility and implementation of a deep learning MR reconstruction for TSE sequences in musculoskeletal imaging[J/OL]. Diagnostics (Basel), 2021, 11(8): 1484 [2022-10-11]. https://pubmed.ncbi.nlm.nih.gov/34441418/. DOI: 10.3390/diagnostics11081484">10.3390/diagnostics11081484">10.3390/diagnostics11081484.
[12]
SHANBHOGUE K, TONG A, SMEREKA P, et al. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence[J]. Eur Radiol, 2021, 31(11): 8447-8457. DOI: 10.1007/s00330-021-08008-3">10.1007/s00330-021-08008-3">10.1007/s00330-021-08008-3.
[13]
UEDA T, OHNO Y, YAMAMOTO K, et al. Deep learning reconstruction of diffusion-weighted MRI improves image quality for prostatic imaging[J]. Radiology, 2022, 303(2): 373-381. DOI: 10.1148/radiol.204097">10.1148/radiol.204097">10.1148/radiol.204097.
[14]
RYU K, ALKAN C, VASANAWALA S S. Improving high frequency image features of deep learning reconstructions via k-space refinement with null-space kernel[J]. Magn Reson Med, 2022, 88(3): 1263-1272. DOI: 10.1002/mrm.29261">10.1002/mrm.29261">10.1002/mrm.29261.
[15]
KANIEWSKA M, DEININGER-CZERMAK E, GETZMANN J M, et al. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time[J/OL]. Eur Radiol, 2023, 33(3): 1513-1525 [2022-10-04]. https://link.springer.com/10.1007/s00330-022-09151-1. DOI: 10.1007/s00330-022-09151-1">10.1007/s00330-022-09151-1">10.1007/s00330-022-09151-1.
[16]
WESSLING D, HERRMANN J, AFAT S, et al. Reduction in acquisition time and improvement in image quality in T2-weighted MR imaging of musculoskeletal tumors of the extremities using a novel deep learning-based reconstruction technique in a turbo spin echo (TSE) sequence[J]. Tomography, 2022, 8(4): 1759-1769. DOI: 10.3390/tomography8040148">10.3390/tomography8040148">10.3390/tomography8040148.
[17]
FOREMAN S C, NEUMANN J, HAN J, et al. Deep learning-based acceleration of Compressed Sense MR imaging of the ankle[J]. Eur Radiol, 2022, 32(12): 8376-8385. DOI: 10.1007/s00330-022-08919-9">10.1007/s00330-022-08919-9">10.1007/s00330-022-08919-9.
[18]
HAHN S, YI J, LEE H J, et al. Image quality and diagnostic performance of accelerated shoulder MRI with deep learning-based reconstruction[J]. AJR Am J Roentgenol, 2022, 218(3): 506-516. DOI: 10.2214/AJR.21.26577">10.2214/AJR.21.26577">10.2214/AJR.21.26577.
[19]
SUBHAS N, BENEDICK A, OBUCHOWSKI N A, et al. Comparison of a fast 5-minute shoulder MRI protocol with a standard shoulder MRI protocol: a multiinstitutional multireader study[J]. AJR Am J Roentgenol, 2017, 208(4): W146-W154. DOI: 10.2214/AJR.16.17041">10.2214/AJR.16.17041">10.2214/AJR.16.17041.
[20]
RECHT M P, ZBONTAR J, SODICKSON D K, et al. Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study[J]. AJR Am J Roentgenol, 2020, 215(6): 1421-1429. DOI: 10.2214/AJR.20.23313">10.2214/AJR.20.23313">10.2214/AJR.20.23313.
[21]
COLE E, CHENG J, PAULY J, et al. Analysis of deep complex-valued convolutional neural networks for MRI reconstruction and phase-focused applications[J]. Magn Reson Med, 2021, 86(2): 1093-1109. DOI: 10.1002/mrm.28733">10.1002/mrm.28733">10.1002/mrm.28733.
[22]
SUBHAS N. Editorial comment: accelerated joint MRI with deep learning-based reconstruction-a promising approach to increasing imaging speed without compromising image quality[J/OL]. AJR Am J Roentgenol, 2022, 218(3): 516 [2022-10-11]. https://pubmed.ncbi.nlm.nih.gov/34585614/. DOI: 10.2214/AJR.21.26880">10.2214/AJR.21.26880">10.2214/AJR.21.26880.
[23]
ALMANSOUR H, GASSENMAIER S, NICKEL D, et al. Deep learning-based superresolution reconstruction for upper abdominal magnetic resonance imaging: an analysis of image quality, diagnostic confidence, and lesion conspicuity[J]. Invest Radiol, 2021, 56(8): 509-516. DOI: 10.1097/RLI.0000000000000769">10.1097/RLI.0000000000000769">10.1097/RLI.0000000000000769.
[24]
YAN F H. The clinical application and development prospect of deep learning reconstruction algorithm[J]. Chin J Radiol, 2022, 56(11): 1165-1167. DOI: 10.3760/cma.j.cn112149-20220918-00755">10.3760/cma.j.cn112149-20220918-00755">10.3760/cma.j.cn112149-20220918-00755.
[25]
UETANI H, NAKAURA T, KITAJIMA M, et al. Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method[J]. Eur Radiol, 2022, 32(7): 4527-4536. DOI: 10.1007/s00330-022-08552-6">10.1007/s00330-022-08552-6">10.1007/s00330-022-08552-6.
[26]
HERRMANN J, GASSENMAIER S, NICKEL D, et al. Diagnostic confidence and feasibility of a deep learning accelerated HASTE sequence of the abdomen in a single breath-hold[J]. Invest Radiol, 2021, 56(5): 313-319. DOI: 10.1097/RLI.0000000000000743">10.1097/RLI.0000000000000743">10.1097/RLI.0000000000000743.
[27]
HERRMANN J, NICKEL D, MUGLER J P, et al. Development and evaluation of deep learning-accelerated single-breath-hold abdominal HASTE at 3 T using variable refocusing flip angles[J]. Invest Radiol, 2021, 56(10): 645-652. DOI: 10.1097/RLI.0000000000000785">10.1097/RLI.0000000000000785">10.1097/RLI.0000000000000785.
[28]
GASSENMAIER S, AFAT S, NICKEL D, et al. Deep learning-accelerated T2-weighted imaging of the prostate: reduction of acquisition time and improvement of image quality[J/OL]. Eur J Radiol, 2021, 137: 109600 [2022-10-04]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X21000802. DOI: 10.1016/j.ejrad.2021.109600">10.1016/j.ejrad.2021.109600">10.1016/j.ejrad.2021.109600.
[29]
KIM E H, CHOI M H, LEE Y J, et al. Deep learning-accelerated T2-weighted imaging of the prostate: impact of further acceleration with lower spatial resolution on image quality[J/OL]. Eur J Radiol, 2021, 145: 110012 [2022-10-04]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X21004939. DOI: 10.1016/j.ejrad.2021.110012">10.1016/j.ejrad.2021.110012">10.1016/j.ejrad.2021.110012.
[30]
ZOCHOWSKI K C, TAN E T, ARGENTIERI E C, et al. Improvement of peripheral nerve visualization using a deep learning-based MR reconstruction algorithm[J]. Magn Reson Imaging, 2022, 85: 186-192. DOI: 10.1016/j.mri.2021.10.038">10.1016/j.mri.2021.10.038">10.1016/j.mri.2021.10.038.

PREV Value of deep learning reconstruction in optimizing prostate MR T2-weighted imaging scanning time and imaging quality
NEXT Effect of structural abnormality of gray matter on motor and non-motor function in spinocerebellar ataxia type 3
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn