Share this content in WeChat
Application and research progress of MRI in diagnosis and prognosis evaluation of breast cancer
WU Junfeng  LIU Wenya 

Cite this article as: WU J F, LIU W Y. Application and research progress of MRI in diagnosis and prognosis evaluation of breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(4): 171-175. DOI:10.12015/issn.1674-8034.2023.04.030.

[Abstract] Breast cancer is the most common cancer in women worldwide. In recent years, magnetic resonance imaging (MRI) has been widely applied in the diagnosis of breast diseases, which has improved the diagnostic accuracy of benign and malignant breast lesions. Meanwhile, MRI can be used to predict the prognosis of patients with breast cancer and guide the clinical selection of treatment plans. This article reviews the application status and research advances of preoperative multi-model MRI, MRI radiomics and artificial intelligence (AI) in the diagnosis and prognosis of breast cancer, aiming to strengthen the understanding of radiologist to breast cancer and to improve the early diagnosis and prognosis evaluation of breast cancer.
[Keywords] breast cancer;diagnosis;prognosis;magnetic resonance imaging;diffusion‐weighted imaging;dynamic contrast-enhanced magnetic resonance imaging;radiomics;artificial intelligence

WU Junfeng   LIU Wenya*  

Department of Radiology, the First Affiliated Hospital, Xinjiang Medical University, Urumqi 830000, China

Corresponding author: Liu WY, E-mail:

Conflicts of interest   None.

Received  2022-11-27
Accepted  2023-04-05
DOI: 10.12015/issn.1674-8034.2023.04.030
Cite this article as: WU J F, LIU W Y. Application and research progress of MRI in diagnosis and prognosis evaluation of breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(4): 171-175. DOI:10.12015/issn.1674-8034.2023.04.030.

SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. DOI: 10.1097/CM9.0000000000002108.
CURIGLIANO G, BURSTEIN H J, WINER E P, et al. De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017[J/OL]. Ann Oncol, 2019, 30(7): 1181 [2022-11-26]. DOI: 10.1093/annonc/mdy537.
GAO J J, SWAIN S M. Luminal A breast cancer and molecular assays: a review[J]. Oncologist, 2018, 23(5): 556-565. DOI: 10.1634/theoncologist.2017-0535.
CESCA M G, VIAN L, CRISTÓVÃO-FERREIRA S, et al. HER2-positive advanced breast cancer treatment in 2020[J/OL]. Cancer Treat Rev, 2020, 88: 102033 [2022-11-26]. DOI: 10.1016/j.ctrv.2020.102033.
KORDE L A, SOMERFIELD M R, CAREY L A, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline[J]. J Clin Oncol, 2021, 39(13): 1485-1505. DOI: 10.1200/JCO.20.03399.
RAHMAT K, MUMIN N A, HAMID M T R, et al. MRI breast: current imaging trends, clinical applications, and future research directions[J]. Curr Med Imaging, 2022, 18(13): 1347-1361. DOI: 10.2174/1573405618666220415130131.
KIM S Y, CHO N. Breast magnetic resonance imaging for patients with newly diagnosed breast cancer: a review[J]. J Breast Cancer, 2022, 25(4): 263-277. DOI: 10.4048/jbc.2022.25.e35.
KAZAMA T, TAKAHARA T, HASHIMOTO J. Breast cancer subtypes and quantitative magnetic resonance imaging: a systemic review[J/OL]. Life (Basel), 2022, 12(4): 490 [2022-11-26]. DOI: 10.3390/life12040490.
ZHANG J, WANG L, LIU H F. Imaging features derived from dynamic contrast-enhanced magnetic resonance imaging to differentiate malignant from benign breast lesions: a systematic review and meta-analysis[J]. J Comput Assist Tomogr, 2022, 46(3): 383-391. DOI: 10.1097/RCT.0000000000001289.
YUEN S, MONZAWA S, YANAI S, et al. The association between MRI findings and breast cancer subtypes: focused on the combination patterns on diffusion-weighted and T2-weighted images[J]. Breast Cancer, 2020, 27(5): 1029-1037. DOI: 10.1007/s12282-020-01105-z.
LI Q, XIAO Q, YANG M, et al. Histogram analysis of quantitative parameters from synthetic MRI: correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer[J/OL]. Eur J Radiol, 2021, 139: 109697 [2022-11-26]. DOI: 10.1016/j.ejrad.2021.109697.
ÖZTÜRK V S, POLAT Y D, SOYDER A, et al. The relationship between MRI findings and molecular subtypes in women with breast cancer[J]. Curr Probl Diagn Radiol, 2020, 49(6): 417-421. DOI: 10.1067/j.cpradiol.2019.07.003.
SEYFETTIN A, DEDE I, HAKVERDI S, et al. MR imaging properties of breast cancer molecular subtypes[J]. Eur Rev Med Pharmacol Sci, 2022, 26(11): 3840-3848. DOI: 10.26355/eurrev_202206_28951.
BORIA F, TAGLIATI C, BALDASSARRE S, et al. Morphological MR features and quantitative ADC evaluation in invasive breast cancer: correlation with prognostic factors[J]. Clin Imaging, 2018, 50: 141-146. DOI: 10.1016/j.clinimag.2018.02.011.
CHEON H, KIM H J, KIM T H, et al. Invasive breast cancer: prognostic value of peritumoral edema identified at preoperative MR imaging[J]. Radiology, 2018, 287(1): 68-75. DOI: 10.1148/radiol.2017171157.
MBERU V, MCFARLANE J, MACASKILL E J, et al. A retrospective review of MRI features associated with metastasis-free survival in women with breast cancer: focusing on skin thickening and skin enhancement[J/OL]. Br J Radiol, 2021, 94(1128): 20210472 [2022-11-26]. DOI: 10.1259/bjr.20210472.
CHEN H, LI W, WAN C, et al. Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers[J/OL]. Front Oncol, 2022, 12: 942943 [2022-11-26]. DOI: 10.3389/fonc.2022.942943.
GRIMM L J, ZHANG J, BAKER J A, et al. Relationships between MRI breast imaging-reporting and data system (BI-RADS) lexicon descriptors and breast cancer molecular subtypes: internal enhancement is associated with luminal B subtype[J]. Breast J, 2017, 23(5): 579-582. DOI: 10.1111/tbj.12799.
GALATI F, RIZZO V, MOFFA G, et al. Radiologic-pathologic correlation in breast cancer: do MRI biomarkers correlate with pathologic features and molecular subtypes?[J/OL]. Eur Radiol Exp, 2022, 6(1): 39 [2022-11-26]. DOI: 10.1186/s41747-022-00289-7.
ELMI A, CONANT E F, KOZLOV A, et al. Preoperative breast MR imaging in newly diagnosed breast cancer: comparison of outcomes based on mammographic modality, breast density and breast parenchymal enhancement[J]. Clin Imaging, 2021, 70: 18-24. DOI: 10.1016/j.clinimag.2020.10.021.
HU N, ZHAO J H, LI Y, et al. Breast cancer and background parenchymal enhancement at breast magnetic resonance imaging: a meta-analysis[J/OL]. BMC Med Imaging, 2021, 21(1): 32 [2022-11-26]. DOI: 10.1186/s12880-021-00566-8.
THOMPSON C M, MALLAWAARACHCHI I, DWIVEDI D K, et al. The association of background parenchymal enhancement at breast MRI with breast cancer: a systematic review and meta-analysis[J]. Radiology, 2019, 292(3): 552-561. DOI: 10.1148/radiol.2019182441.
MANN R M, ATHANASIOU A, BALTZER P A T, et al. Breast cancer screening in women with extremely dense breasts recommendations of the European Society of Breast Imaging (EUSOBI)[J]. Eur Radiol, 2022, 32(6): 4036-4045. DOI: 10.1007/s00330-022-08617-6.
ONISHI N, LI W, NEWITT D C, et al. Breast MRI during neoadjuvant chemotherapy: lack of background parenchymal enhancement suppression and inferior treatment response[J]. Radiology, 2021, 301(2): 295-308. DOI: 10.1148/radiol.2021203645.
LIM Y, KO E S, HAN B K, et al. Background parenchymal enhancement on breast MRI: association with recurrence-free survival in patients with newly diagnosed invasive breast cancer[J]. Breast Cancer Res Treat, 2017, 163(3): 573-586. DOI: 10.1007/s10549-017-4217-5.
GULLO R LO, DAIMIEL I, ROSSI SACCARELLI C, et al. MRI background parenchymal enhancement, fibroglandular tissue, and mammographic breast density in patients with invasive lobular breast cancer on adjuvant endocrine hormonal treatment: associations with survival[J/OL]. Breast Cancer Res, 2020, 22(1): 93 [2022-11-26]. DOI: 10.1186/s13058-020-01329-z.
RELLA R, BUFI E, BELLI P, et al. Association between contralateral background parenchymal enhancement on MRI and outcome in patients with unilateral invasive breast cancer receiving neoadjuvant chemotherapy[J]. Diagn Interv Imaging, 2022, 103(10): 486-494. DOI: 10.1016/j.diii.2022.04.004.
GOTO M, LE BIHAN D, YOSHIDA M, et al. Adding a model-free diffusion MRI marker to BI-RADS assessment improves specificity for diagnosing breast lesions[J]. Radiology, 2019, 292(1): 84-93. DOI: 10.1148/radiol.2019181780.
ZHANG L, TANG M, MIN Z Q, et al. Accuracy of combined dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted imaging for breast cancer detection: a meta-analysis[J]. Acta Radiol, 2016, 57(6): 651-660. DOI: 10.1177/0284185115597265.
KANG B J, LIPSON J A, PLANEY K R, et al. Rim sign in breast lesions on diffusion-weighted magnetic resonance imaging: diagnostic accuracy and clinical usefulness[J]. J Magn Reson Imaging, 2015, 41(3): 616-623. DOI: 10.1002/jmri.24617.
SUROV A, MEYER H J, WIENKE A. Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings? A meta-analysis based on 13 847 lesions[J/OL]. BMC Cancer, 2019, 19(1): 955 [2022-11-26]. DOI: 10.1186/s12885-019-6201-4.
MARTINCICH L, DEANTONI V, BERTOTTO I, et al. Correlations between diffusion-weighted imaging and breast cancer biomarkers[J]. Eur Radiol, 2012, 22(7): 1519-1528. DOI: 10.1007/s00330-012-2403-8.
KHOULI R H EL, MACURA K J, KAMEL I R, et al. 3-T dynamic contrast-enhanced MRI of the breast: pharmacokinetic parameters versus conventional kinetic curve analysis[J]. AJR Am J Roentgenol, 2011, 197(6): 1498-1505. DOI: 10.2214/AJR.10.4665.
WANG Q, LIU W H, WANG R, et al. Correlation between quantitative parameters, apparent diffusion coefficient of 3.0T dynamic enhanced MRI and prognostic factors as well as molecular types of breast cancer[J]. Chin J Med Imaging, 2019, 27(7): 517-521. DOI: 10.3969/j.issn.1005-5185.2019.07.009.
LIU L, MEI N, YIN B, et al. Correlation of DCE-MRI perfusion parameters and molecular biology of breast infiltrating ductal carcinoma[J/OL]. Front Oncol, 2021, 11: 561735 [2022-11-26]. DOI: 10.3389/fonc.2021.561735.
XIAO W X, JIANG Y Z, SHAO Z M. Application of artif cial intelligence in precision medicine for breast cancer[J]. J Pract Oncol, 2022, 37(2): 112-116. DOI: 10.13267/j.cnki.syzlzz.2022.019.
TAGLIAFICO A S, PIANA M, SCHENONE D, et al. Overview of radiomics in breast cancer diagnosis and prognostication[J]. Breast, 2020, 49: 74-80. DOI: 10.1016/j.breast.2019.10.018.
MEYER-BASE A, MORRA L, TAHMASSEBI A, et al. AI-enhanced diagnosis of challenging lesions in breast MRI: a methodology and application primer[J]. J Magn Reson Imaging, 2021, 54(3): 686-702. DOI: 10.1002/jmri.27332.
BITENCOURT A, DAIMIEL NARANJO I, GULLO R LO, et al. AI-enhanced breast imaging: where are we and where are we heading?[J/OL]. Eur J Radiol, 2021, 142: 109882 [2022-11-26]. DOI: 10.1016/j.ejrad.2021.109882.
MEYER-BÄSE A, MORRA L, MEYER-BÄSE U, et al. Current status and future perspectives of artificial intelligence in magnetic resonance breast imaging[J/OL]. Contrast Media Mol Imaging, 2020, 2020: 6805710 [2022-11-26]. DOI: 10.1155/2020/6805710.
ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal MRI for the differential diagnosis of benign and malignant breast lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607. DOI: 10.1002/jmri.27098.
LIU Z S, FENG B, LI C L, et al. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics[J]. J Magn Reson Imaging, 2019, 50(3): 847-857. DOI: 10.1002/jmri.26688.
DALMIŞ M U, VREEMANN S, KOOI T, et al. Fully automated detection of breast cancer in screening MRI using convolutional neural networks[J/OL]. J Med Imaging (Bellingham), 2018, 5(1): 014502 [2022-11-26]. DOI: 10.1117/1.JMI.5.1.014502.
ZHOU J, LUO L Y, DOU Q, et al. Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images[J]. J Magn Reson Imaging, 2019, 50(4): 1144-1151. DOI: 10.1002/jmri.26721.
XU H, LIU J K, CHEN Z, et al. Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer[J]. Eur Radiol, 2022, 32(7): 4845-4856. DOI: 10.1007/s00330-022-08539-3.
ZHANG Y, ZHU Y F, ZHANG K, et al. Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps[J]. Radiol Med, 2020, 125(2): 109-116. DOI: 10.1007/s11547-019-01100-1.
YIN H L, BAI L T, JIA H H, et al. Noninvasive assessment of breast cancer molecular subtypes on multiparametric MRI using convolutional neural network with transfer learning[J]. Thorac Cancer, 2022, 13(22): 3183-3191. DOI: 10.1111/1759-7714.14673.
HA R, MUTASA S, KARCICH J, et al. Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm[J]. J Digit Imaging, 2019, 32(2): 276-282. DOI: 10.1007/s10278-019-00179-2.
SHENG W Y, XIA S L, WANG Y R, et al. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning[J/OL]. Front Oncol, 2022, 12: 964605 [2022-11-26]. DOI: 10.3389/fonc.2022.964605.
FISHER C S. Neoadjuvant chemotherapy for breast cancer: the ultimate "spy"[J]. Ann Surg Oncol, 2022, 29(11): 6508-6510. DOI: 10.1245/s10434-022-12153-4.
LI C C, LU N, HE Z F, et al. A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7685-7693. DOI: 10.1245/s10434-022-12034-w.
EUN N L, KANG D, SON E J, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2020, 294(1): 31-41. DOI: 10.1148/radiol.2019182718.
MA M M, GAN L Y, LIU Y H, et al. Radiomics features based on automatic segmented MRI images: prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy[J/OL]. Eur J Radiol, 2022, 146: 110095 [2022-11-26]. DOI: 10.1016/j.ejrad.2021.110095.
KOH J, LEE E, HAN K, et al. Three-dimensional radiomics of triple-negative breast cancer: prediction of systemic recurrence[J/OL]. Sci Rep, 2020, 10(1): 2976 [2022-11-26]. DOI: 10.1038/s41598-020-59923-2.
CHITALIA R D, ROWLAND J, MCDONALD E S, et al. Imaging phenotypes of breast cancer heterogeneity in preoperative breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) scans predict 10-year recurrence[J]. Clin Cancer Res, 2020, 26(4): 862-869. DOI: 10.1158/1078-0432.CCR-18-4067.
SONG D L, YANG F, ZHANG Y J, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 17 [2022-22-26]. DOI: 10.1186/s40644-022-00450-w.
YU Y F, HE Z F, OUYANG J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J/OL]. EBioMedicine, 2021, 69: 103460 [2022-22-26]. DOI: 10.1016/j.ebiom.2021.103460.
JONES M A, ISLAM W, FAIZ R, et al. Applying artificial intelligence technology to assist with breast cancer diagnosis and prognosis prediction[J/OL]. Front Oncol, 2022, 12: 980793 [2022-22-26]. DOI: 10.3389/fonc.2022.980793.

PREV Overview of MRI-based radiomics in breast cancer
NEXT Research progress of magnetic resonance elastography in liver focal lesions

Tel & Fax: +8610-67113815    E-mail: