Share this content in WeChat
Research progress in MRI imaging evaluation of angiogenesis in breast cancer
LIANG Hongbing  ZHANG Lina  NING Ning  WANG Zhuo  WU Qi  SONG Qingwei 

Cite this article as: LIANG H B, ZHANG L N, NING N, et al. Research progress in MRI imaging evaluation of angiogenesis in breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(4): 160-165, 180. DOI:10.12015/issn.1674-8034.2023.04.028.

[Abstract] There is an important relationship between the occurrence, development and prognosis of breast cancer and angiogenesis. MRI has the advantages of high resolution of soft tissue, non-invasive, non-radiation and relatively objective results, which can reflect the angiogenesis in and around the tumor. This paper reviews the MRI evaluation of breast cancer angiogenesis, including the pathological basis of imaging, multi-modal imaging technology and clinical application, opportunities and challenges faced by new technologies such as combined positron emission tomography and imaging omics, in order to summarize the advantages and disadvantages of MRI techniques for breast cancer angiogenesis. In this way, imaging physicians' attention to tumor blood vessels is strengthened, which is helpful to further improve the level of accurate diagnosis and treatment of breast cancer.
[Keywords] breast cancer;blood vessels;imaging evaluation;magnetic resonance imaging;radiomics

LIANG Hongbing   ZHANG Lina*   NING Ning   WANG Zhuo   WU Qi   SONG Qingwei  

Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: Zhang LN, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS 2022 General Project of "Peak Climbing Plan" of Dalian Key Specialty of Medicine (No. 2022DF042); General Project of Teaching Reform Research of Dalian Medical University in 2021 (No. DYLX21036).
Received  2022-11-11
Accepted  2023-04-07
DOI: 10.12015/issn.1674-8034.2023.04.028
Cite this article as: LIANG H B, ZHANG L N, NING N, et al. Research progress in MRI imaging evaluation of angiogenesis in breast cancer[J]. Chin J Magn Reson Imaging, 2023, 14(4): 160-165, 180. DOI:10.12015/issn.1674-8034.2023.04.028.

HUANG J J, CHAN P S, LOK V, et al. Global incidence and mortality of breast cancer: a trend analysis[J]. Aging (Albany NY), 2021, 13(4): 5748-5803. DOI: 10.18632/aging.202502.
WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic factors and genotypes in patients with breast cancer using multiple mathematical models of MR diffusion imaging[J/OL]. Front Oncol, 2022, 12: 825264 [2022-10-16]. DOI: 10.3389/fonc.2022.825264.
TSAI W C, CHANG K M, KAO K J. Dynamic contrast enhanced MRI and intravoxel incoherent motion to identify molecular subtypes of breast cancer with different vascular normalization gene expression[J]. Korean J Radiol, 2021, 22(7): 1021-1033. DOI: 10.3348/kjr.2020.0760.
XIAO J, RAHBAR H, HIPPE D S, et al. Dynamic contrast-enhanced breast MRI features correlate with invasive breast cancer angiogenesis[J/OL]. NPJ Breast Cancer, 2021, 7(1): 42 [2022-10-16]. DOI: 10.1038/s41523-021-00247-3.
ÇETINKAYA E, YıLDıZ Ş, OTÇU H, et al. The value of adjacent vessel sign in malignant breast tumors[J]. Diagn Interv Radiol, 2022, 28(5): 463-469. DOI: 10.5152/dir.2022.211228.
JING X P, DORRIUS M D, WIELEMA M, et al. Breast tumor identification in ultrafast MRI using temporal and spatial information[J/OL]. Cancers, 2022, 14(8): 2042 [2022-10-16]. DOI: 10.3390/cancers14082042.
BIAN Y T, JIN P, WANG Y L, et al. Clinical applications of DSC-MRI parameters assess angiogenesis and differentiate malignant from benign soft tissue tumors in limbs[J]. Acad Radiol, 2020, 27(3): 354-360. DOI: 10.1016/j.acra.2019.04.023.
CHANG L F, LAN H L. Effect of neoadjuvant chemotherapy on angiogenesis and cell proliferation of breast cancer evaluated by dynamic enhanced magnetic resonance imaging[J/OL]. Biomed Res Int, 2022, 2022: 3156093 [2022-10-16]. DOI: 10.1155/2022/3156093.
ONISHI N, KATAOKA M, KANAO S, et al. Ultrafast dynamic contrast-enhanced MRI of the breast using compressed sensing: breast cancer diagnosis based on separate visualization of breast arteries and veins[J]. J Magn Reson Imaging, 2018, 47(1): 97-104. DOI: 10.1002/jmri.25747.
CARMONA-BOZO J C, MANAVAKI R, WOITEK R, et al. Hypoxia and perfusion in breast cancer: simultaneous assessment using PET/MR imaging[J]. Eur Radiol, 2021, 31(1): 333-344. DOI: 10.1007/s00330-020-07067-2.
MITRA D, BHATTACHARYYA S, ALAM N, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast[J]. Breast Cancer Res Treat, 2020, 179(2): 359-370. DOI: 10.1007/s10549-019-05482-8.
WANG R X, CHEN S, HUANG L, et al. Monitoring serum VEGF in neoadjuvant chemotherapy for patients with triple-negative breast cancer: a new strategy for early prediction of treatment response and patient survival[J]. Oncologist, 2019, 24(6): 753-761. DOI: 10.1634/theoncologist.2017-0602.
SARDANELLI F, IOZZELLI A, FAUSTO A, et al. Gadobenate dimeglumine-enhanced MR imaging breast vascular maps: association between invasive cancer and ipsilateral increased vascularity[J]. Radiology, 2005, 235(3): 791-797. DOI: 10.1148/radiol.2353040733.
BANYS-PALUCHOWSKI M, WITZEL I, RIETHDORF S, et al. The clinical relevance of serum vascular endothelial growth factor (VEGF) in correlation to circulating tumor cells and other serum biomarkers in patients with metastatic breast cancer[J]. Breast Cancer Res Treat, 2018, 172(1): 93-104. DOI: 10.1007/s10549-018-4882-z.
FULLER A M, OLSSON L T, MIDKIFF B R, et al. Vascular density of histologically benign breast tissue from women with breast cancer: associations with tissue composition and tumor characteristics[J]. Hum Pathol, 2019, 91: 43-51. DOI: 10.1016/j.humpath.2019.06.003.
STYLIANOPOULOS T, MUNN L L, JAIN R K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside[J]. Trends Cancer, 2018, 4(4): 292-319. DOI: 10.1016/j.trecan.2018.02.005.
MARTIN J D, SEANO G, JAIN R K. Normalizing function of tumor vessels: progress, opportunities, and challenges[J]. Annu Rev Physiol, 2019, 81: 505-534. DOI: 10.1146/annurev-physiol-020518-114700.
BRAMAN N, PRASANNA P, BERA K, et al. Novel radiomic measurements of tumor-associated vasculature morphology on clinical imaging as a biomarker of treatment response in multiple cancers[J]. Clin Cancer Res, 2022, 28(20): 4410-4424. DOI: 10.1158/1078-0432.CCR-21-4148.
WANG J, TANG W W, TIAN Z F, et al. Correlation between DCE-MRI parameters/ADC and pathological molecular prognostic markers of breast cancer[J]. Chin J Magn Reson Imaging, 2021, 12(3): 76-79. DOI: 10.12015/issn.1674-8034.2021.03.017.
WANG M F, XU W, QIN T. Differentiation of benign and malignant breast tumors by quantitative and semi-quantitative MRI parameters and correlation analysis with biological indexes of breast cancer[J]. Chin J Magn Reson Imaging, 2020, 11(12): 1174-1177. DOI: 10.12015/issn.1674-8034.2020.12.021.
WU Y Y, YAN Y L, GAO X, et al. Gd-encapsulated carbonaceous dots for accurate characterization of tumor vessel permeability in magnetic resonance imaging[J/OL]. Nanomed-Nanotechnol Biol Med, 2019, 21: 102074 [2022-10-16]. DOI: 10.1016/j.nano.2019.102074.
AO F, YAN Y, ZHANG Z L, et al. The value of dynamic contrast-enhanced magnetic resonance imaging combined with apparent diffusion coefficient in the differentiation of benign and malignant diseases of the breast[J]. Acta Radiol, 2022, 63(7): 891-900. DOI: 10.1177/02841851211024002.
THAWANI R, GAO L N, MOHINANI A, et al. Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study[J/OL]. BMC Med Imaging, 2022, 22(1): 182 [2022-10-16]. DOI: 10.1186/s12880-022-00908-0.
KANG S R, KIM H W, KIM H S. Evaluating the relationship between dynamic contrast-enhanced MRI (DCE-MRI) parameters and pathological characteristics in breast cancer[J]. J Magn Reson Imaging, 2020, 52(5): 1360-1373. DOI: 10.1002/jmri.27241.
MACHIREDDY A, THIBAULT G, TUDORICA A, et al. Early prediction of breast cancer therapy response using multiresolution fractal analysis of DCE-MRI parametric maps[J]. Tomography, 2019, 5(1): 90-98. DOI: 10.18383/j.tom.2018.00046.
LV T X, WU Y Q, WANG Y H, et al. A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI[J/OL]. Med Image Anal, 2022, 82: 102572 [2022-10-16]. DOI: 10.1016/
KIM J J, KIM J Y, HWANGBO L, et al. Ultrafast dynamic contrast-enhanced MRI using compressed sensing: associations of early kinetic parameters with prognostic factors of breast cancer[J]. AJR Am J Roentgenol, 2021, 217(1): 56-63. DOI: 10.2214/AJR.20.23457.
HONDA M, KATAOKA M, IIMA M, et al. Background parenchymal enhancement and its effect on lesion detectability in ultrafast dynamic contrast-enhanced MRI[J/OL]. Eur J Radiol, 2020, 129: 108984 [2022-10-16]. DOI: 10.1016/j.ejrad.2020.108984.
KIM S Y, CHO N, CHOI Y, et al. Ultrafast dynamic contrast-enhanced breast MRI: lesion conspicuity and size assessment according to background parenchymal enhancement[J]. Korean J Radiol, 2020, 21(5): 561-571. DOI: 10.3348/kjr.2019.0567.
WU C Y, PINEDA F, HORMUTH D A, et al. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors[J]. Magn Reson Med, 2019, 81(3): 2147-2160. DOI: 10.1002/mrm.27529.
HONDA M, KATAOKA M, ONISHI N, et al. New parameters of ultrafast dynamic contrast-enhanced breast MRI using compressed sensing[J]. J Magn Reson Imaging, 2020, 51(1): 164-174. DOI: 10.1002/jmri.26838.
MUS R D, BORELLI C, BULT P, et al. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions[J]. Eur J Radiol, 2017, 89: 90-96. DOI: 10.1016/j.ejrad.2017.01.020.
KATAOKA M, HONDA M, OHASHI A, et al. Ultrafast dynamic contrast-enhanced MRI of the breast: how is it used?[J]. Magn Reson Med Sci, 2022, 21(1): 83-94. DOI: 10.2463/mrms.rev.2021-0157.
RAMTOHUL T, TESCHER C, VAFLARD P, et al. Prospective evaluation of ultrafast breast MRI for predicting pathologic response after neoadjuvant therapies[J]. Radiology, 2022, 305(3): 565-574. DOI: 10.1148/radiol.220389.
ZHAO X, YUAN L, ZHANG C, et al. Quantitative value of DCE-MRI perfusion parameters in distinguishing benign and malignant breast lesions[J]. J Clin Radiol, 2022, 41(5): 834-838. DOI: 10.13437/j.cnki.jcr.2022.05.014.
KANG K M, CHOI S H, CHUL-KEE P, et al. Differentiation between glioblastoma and primary CNS lymphoma: application of DCE-MRI parameters based on arterial input function obtained from DSC-MRI[J]. Eur Radiol, 2021, 31(12): 9098-9109. DOI: 10.1007/s00330-021-08044-z.
WANG H X, XUE S S, SHENG W, et al. Expression level of HIF-1α in breast cancer and its correlation with tumor angiogenesis[J]. J Mod Oncol, 2021, 29(19): 3396-3400. DOI: 10.3969/j.issn.1672-4992.2021.19.015.
KRISHNAPRIYA S, MALIPATIL B, SUREKHA S, et al. Microvessel density (MVD) in locally advanced breast cancer[J]. Asian Pac J Cancer Prev, 2019, 20(5): 1537-1545. DOI: 10.31557/APJCP.2019.20.5.1537.
FRANKLIN S L, VOORMOLEN N, BONES I K, et al. Feasibility of velocity-selective arterial spin labeling in breast cancer patients for noncontrast-enhanced perfusion imaging[J]. J Magn Reson Imaging, 2021, 54(4): 1282-1291. DOI: 10.1002/jmri.27781.
CAO J, XIAO L, HE B, et al. Diagnostic value of combined diffusion-weighted imaging with dynamic contrast enhancement MRI in differentiating malignant from benign bone lesions[J/OL]. Clin Radiol, 2017, 72(9): 793.e1-793.e9 [2022-10-16]. DOI: 10.1016/j.crad.2017.04.017.
FUSCO R, GRANATA V, PARIANTE P, et al. Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination[J]. Magn Reson Imaging, 2021, 75: 51-59. DOI: 10.1016/j.mri.2020.10.008.
FUSCO R, GRANATA V, MATTACE RASO M, et al. Blood oxygenation level dependent magnetic resonance imaging (MRI), dynamic contrast enhanced MRI, and diffusion weighted MRI for benign and malignant breast cancer discrimination: a preliminary experience[J/OL]. Cancers, 2021, 13(10): 2421 [2022-10-16]. DOI: 10.3390/cancers13102421.
KIM Y, PARK J J, KIM C K. Blood oxygenation level-dependent MRI at 3T for differentiating prostate cancer from benign tissue: a preliminary experience[J/OL]. Br J Radiol, 2022, 95(1131): 20210461 [2022-10-16]. DOI: 10.1259/bjr.20210461.
GLICKSMAN R, CHAUDARY N, PINTILIE M, et al. The predictive value of nadir neutrophil count during treatment of cervical cancer: interactions with tumor hypoxia and interstitial fluid pressure (IFP)[J]. Clin Transl Radiat Oncol, 2017, 6: 15-20. DOI: 10.1016/j.ctro.2017.08.002.
ZUAZO-GAZTELU I, CASANOVAS O. Unraveling the role of angiogenesis in cancer ecosystems[J/OL]. Front Oncol, 2018, 8: 248 [2022-10-16]. DOI: 10.3389/fonc.2018.00248.
STADLBAUER A, ZIMMERMANN M, BENNANI-BAITI B, et al. Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: initial results[J]. Mol Imaging Biol, 2019, 21(4): 758-770. DOI: 10.1007/s11307-018-1298-4.
GRKOVSKI M, SCHÖDER H, LEE N Y, et al. Multiparametric imaging of tumor hypoxia and perfusion with 18F-fluoromisonidazole dynamic PET in head and neck cancer[J]. J Nucl Med, 2017, 58(7): 1072-1080. DOI: 10.2967/jnumed.116.188649.
PUJARA A C, KIM E, AXELROD D, et al. PET/MRI in breast cancer[J]. J Magn Reson Imaging, 2019, 49(2): 328-342. DOI: 10.1002/jmri.26298.
KIM J J, KIM J Y, SUH H B, et al. Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging[J]. Eur Radiol, 2022, 32(2): 822-833. DOI: 10.1007/s00330-021-08166-4.
ONISHI N, SADINSKI M, HUGHES M C, et al. Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer[J/OL]. Breast Cancer Res, 2020, 22(1): 58 [2022-10-16]. DOI: 10.1186/s13058-020-01292-9.
WANG H T, ZHAO M, FAN X J, et al. The value of MRI radiomics features for prediction of lymphovascular invasion in invasive breast cancer[J]. Chin J Radiol, 2022, 56(9): 982-988. DOI: 10.3760/cma.j.cn112149-20220106-00016.
BUJOR I S, CIOCA A, CEAUȘU RA, et al. Evaluation of vascular proliferation in molecular subtypes of breast cancer[J]. In Vivo, 2018, 32(1): 79-83. DOI: 10.21873/invivo.11207.
LI H, ZHU Y T, BURNSIDE E S, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, oncotype DX, and PAM50 gene assays[J]. Radiology, 2016, 281(2): 382-391. DOI: 10.1148/radiol.2016152110.
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2022-10-16]. DOI: 10.1001/jamanetworkopen.2019.2561.
JAHANI N, COHEN E, HSIEH M K, et al. Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE-MRI registration[J/OL]. Sci Rep, 2019, 9: 12114 [2022-10-16]. DOI: 10.1038/s41598-019-48465-x.
LIU Z S, FENG B, LI C L, et al. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics[J]. J Magn Reson Imaging, 2019, 50(3): 847-857. DOI: 10.1002/jmri.26688.

PREV Research progress of magnetic resonance imaging in Duchenne muscular dystrophy cardiomyopathy
NEXT Overview of MRI-based radiomics in breast cancer

Tel & Fax: +8610-67113815    E-mail: