Share this content in WeChat
Progress of MRI in differentiating treatment-related changes and recurrence of glioblastoma
ZHU Zhengyang  HAN Xiaowei  YE Meiping  CHEN Sixuan  ZHANG Xin  ZHANG Bing 

Cite this article as: ZHU Z Y, HAN X W, YE M P, et al. Progress of MRI in differentiating treatment-related changes and recurrence of glioblastoma[J]. Chin J Magn Reson Imaging, 2023, 14(4): 147-153. DOI:10.12015/issn.1674-8034.2023.04.026.

[Abstract] Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy. Current treatment options include surgical resection and subsequent chemotherapy and radiation therapy. Treatment-related changes often occur after treatment of GBM, including pseudoprogression, radiation necrosis and pseudoresponse. Treatment-related changes and tumor recurrence can be confused clinically due to similar image findings. Accurate identification and diagnosis of treatment-related changes and recurrences of GBM contributes to timely assessment of disease progression, adjustment of treatment regimens, improvement of therapeutic effects, and is crucial for improving patient prognosis and long-term survival. This paper briefly reviewed the progress of magnetic resonance techniques such as conventional magnetic resonance imaging, diffusion weighed imaging, diffusion tensor imaging, diffusion kurtosis imaging, dynamic susceptibility contrast-enhanced imaging, dynamic contrast enhanced, arterial spin labeling, magnetic resonance spectrum, amide proton transfer, etc in differentiating treatment-related changes and recurrence of GBM. This review will help clinicians and researchers better understand the differences of image manifestation and the differences of hemodynamics, metabolic level and histological microstructure between GBM recurrence and treatment-related changes. This review will further help improve the overall prognosis of GBM patients and lay the foundation for the subsequent application of new magnetic resonance technology in this field.
[Keywords] glioblastoma;magnetic resonance imaging;treatment-related changes;pseudoprogression;radiation necrosis;pseudoresponse;recurrence

ZHU Zhengyang1   HAN Xiaowei1   YE Meiping1   CHEN Sixuan1   ZHANG Xin1   ZHANG Bing1, 2, 3, 4*  

1 Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210093, China

2 Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210093, China

3 Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093, China

4 Institute of Brain Science, Nanjing University, Nanjing 210093, China

Corresponding author: Zhang B, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81971596).
Received  2022-08-14
Accepted  2023-04-04
DOI: 10.12015/issn.1674-8034.2023.04.026
Cite this article as: ZHU Z Y, HAN X W, YE M P, et al. Progress of MRI in differentiating treatment-related changes and recurrence of glioblastoma[J]. Chin J Magn Reson Imaging, 2023, 14(4): 147-153. DOI:10.12015/issn.1674-8034.2023.04.026.

HANIF F, MUZAFFAR K, PERVEEN K, et al. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment[J]. Asian Pac J Cancer Prev, 2017, 18(1): 3-9. DOI: 10.22034/APJCP.2017.18.1.3.
MCKINNON C, NANDHABALAN M, MURRAY S A, et al. Glioblastoma: clinical presentation, diagnosis, and management[J/OL]. BMJ, 2021, 374: n1560 [2022-08-13]. DOI: 10.1136/bmj.n1560.
TYKOCKI T, ELTAYEB M. Ten-year survival in glioblastoma. A systematic review[J]. J Clin Neurosci, 2018, 54: 7-13. DOI: 10.1016/j.jocn.2018.05.002.
DELGADO-LÓPEZ P D, RIÑONES-MENA E, CORRALES-GARCÍA E M. Treatment-related changes in glioblastoma: a review on the controversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis[J]. Clin Transl Oncol, 2018, 20(8): 939-953. DOI: 10.1007/s12094-017-1816-x.
ELLINGSON B M, WEN P Y, CLOUGHESY T F. Modified criteria for radiographic response assessment in glioblastoma clinical trials[J]. Neurotherapeutics, 2017, 14(2): 307-320. DOI: 10.1007/s13311-016-0507-6.
GALLDIKS N, KOCHER M, LANGEN K J. Pseudoprogression after glioma therapy: an update[J]. Expert Rev Neurother, 2017, 17(11): 1109-1115. DOI: 10.1080/14737175.2017.1375405.
HIMES B T, ARNETT A L, MERRELL K W, et al. Glioblastoma recurrence versus treatment effect in a pathology-documented series[J]. Can J Neurol Sci, 2020, 47(4): 525-530. DOI: 10.1017/cjn.2020.36.
BANI-SADR A, BERNER L P, BARRITAULT M, et al. Combined analysis of MGMT methylation and dynamic-susceptibility-contrast MRI for the distinction between early and pseudo-progression in glioblastoma patients[J]. Rev Neurol (Paris), 2019, 175(9): 534-543. DOI: 10.1016/j.neurol.2019.01.400.
TESILEANU C M S, EORTC BRAIN TUMOR GROUP AND THE CATNON INVESTIGATORS, GORLIA T, et al. MGMT promoter methylation determined by the MGMT-STP27 algorithm is not predictive for outcome to temozolomide in IDH-mutant anaplastic astrocytomas[J]. Neuro Oncol, 2022, 24(4): 665-667. DOI: 10.1093/neuonc/noac014.
MUSCAS G, VAN NIFTRIK C H B, SEBÖK M, et al. Distinct cerebrovascular reactivity patterns for brain radiation necrosis[J/OL]. Cancers (Basel), 2021, 13(8): 1840 [2022-08-13]. DOI: 10.3390/cancers13081840.
SCHULTE J D, AGHI M K, TAYLOR J W. Anti-angiogenic therapies in the management of glioblastoma[J/OL]. Chin Clin Oncol, 2021, 10(4): 37 [2022-08-13]. DOI: 10.21037/cco.2020.03.06.
AREVALO O D, SOTO C, RABIEI P, et al. Assessment of glioblastoma response in the era of bevacizumab: longstanding and emergent challenges in the imaging evaluation of pseudoresponse[J/OL]. Front Neurol, 2019, 10: 460 [2022-08-13]. DOI: 10.3389/fneur.2019.00460.
CHEN X, WEI X H, ZHANG Z P, et al. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI[J]. Clin Imaging, 2015, 39(5): 775-780. DOI: 10.1016/j.clinimag.2015.04.003.
YOUNG R J, GUPTA A, SHAH A D, et al. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma[J]. Neurology, 2011, 76(22): 1918-1924. DOI: 10.1212/WNL.0b013e31821d74e7.
LI M X, REN X H, DONG G H, et al. Distinguishing pseudoprogression from true early progression in isocitrate dehydrogenase wild-type glioblastoma by interrogating clinical, radiological, and molecular features[J/OL]. Front Oncol, 2021, 11: 627325 [2022-08-14]. DOI: 10.3389/fonc.2021.627325.
ROWE L S, BUTMAN J A, MACKEY M, et al. Differentiating pseudoprogression from true progression: analysis of radiographic, biologic, and clinical clues in GBM[J]. J Neurooncol, 2018, 139(1): 145-152. DOI: 10.1007/s11060-018-2855-z.
LE FÈVRE C, LHERMITTE B, AHLE G, et al. Pseudoprogression versus true progression in glioblastoma patients: a multiapproach literature review: part 1-Molecular, morphological and clinical features[J/OL]. Crit Rev Oncol Hematol, 2021, 157: 103188 [2022-08-14]. DOI: 10.1016/j.critrevonc.2020.103188.
ALI F S, AREVALO O, ZOROFCHIAN S, et al. Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities[J/OL]. Curr Oncol Rep, 2019, 21(8): 66 [2022-08-13]. DOI: 10.1007/s11912-019-0818-y.
THUST S C, VAN DEN BENT M J, SMITS M. Pseudoprogression of brain tumors[J]. J Magn Reson Imaging, 2018, 48(3): 571-589. DOI: 10.1002/jmri.26171.
CHANG P D, CHOW D S, YANG P H, et al. Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images[J]. AJR Am J Roentgenol, 2017, 208(1): 57-65. DOI: 10.2214/AJR.16.16234.
AUER T A, BREIT H C, MARINI F, et al. Evaluation of the apparent diffusion coefficient in patients with recurrent glioblastoma under treatment with bevacizumab with radiographic pseudoresponse[J]. J De Neuroradiol, 2019, 46(1): 36-43. DOI: 10.1016/j.neurad.2018.04.002.
REARDON D A, BALLMAN K V, BUCKNER J C, et al. Impact of imaging measurements on response assessment in glioblastoma clinical trials[J/OL]. Neuro Oncol, 2014, 16(Suppl 7): vii24-vii35 [2022-08-13]. DOI: 10.1093/neuonc/nou286.
CHEN F, QING Z, DAI Z Y, et al. Analysis on cerebral diffusion tensor imaging automatic fiber quantification of patients with Alzheimer's disease[J]. Chin J Behav Med Brain Sci, 2020, 29(11): 983-988. DOI: 10.3760/cma.j.cn371468-20200629-01514.
CHEN F, ZHANG X, LI M, et al. Axial diffusivity and tensor shape as early markers to assess cerebral white matter damage caused by brain tumors using quantitative diffusion tensor tractography[J]. CNS Neurosci Ther, 2012, 18(8): 667-673. DOI: 10.1111/j.1755-5949.2012.00354.x.
JIN Y, RANDALL J W, ELHALAWANI H, et al. Detection of glioblastoma subclinical recurrence using serial diffusion tensor imaging[J/OL]. Cancers (Basel), 2020, 12(3): E568 [2022-08-13]. DOI: 10.3390/cancers12030568.
METZ M C, MOLINA-ROMERO M, LIPKOVA J, et al. Predicting glioblastoma recurrence from preoperative MR scans using fractional-anisotropy maps with free-water suppression[J/OL]. Cancers (Basel), 2020, 12(3): 728 [2022-08-14]. DOI: 10.3390/cancers12030728.
AGARWAL A, KUMAR S, NARANG J, et al. Morphologic MRI features, diffusion tensor imaging and radiation dosimetric analysis to differentiate pseudo-progression from early tumor progression[J]. J Neurooncol, 2013, 112(3): 413-420. DOI: 10.1007/s11060-013-1070-1.
POGOSBEKIAN E L, PRONIN I N, ZAKHAROVA N E, et al. Feasibility of generalised diffusion kurtosis imaging approach for brain glioma grading[J]. Neuroradiology, 2021, 63(8): 1241-1251. DOI: 10.1007/s00234-020-02613-7.
HUANG S, HUANG C, LI M, et al. White matter abnormalities and cognitive deficit after mild traumatic brain injury: comparing DTI, DKI, and NODDI[J/OL]. Front Neurol, 2022, 13: 803066 [2022-08-10]. DOI: 10.3389/fneur.2022.803066.
LESBATS C, KELLY C L, CZANNER G, et al. Diffusion kurtosis imaging for characterizing tumor heterogeneity in an intracranial rat glioblastoma model[J/OL]. NMR Biomed, 2020, 33(11): e4386 [2022-08-13]. DOI: 10.1002/nbm.4386.
WU X F, LIANG X, WANG X C, et al. Differentiating high-grade glioma recurrence from pseudoprogression: comparing diffusion kurtosis imaging and diffusion tensor imaging[J/OL]. Eur J Radiol, 2021, 135: 109445 [2022-08-13]. DOI: 10.1016/j.ejrad.2020.109445.
STRAUSS S B, MENG A, EBANI E J, et al. Imaging glioblastoma posttreatment: progression, pseudoprogression, pseudoresponse, radiation necrosis[J]. Neuroimaging Clin N Am, 2021, 31(1): 103-120. DOI: 10.1016/j.nic.2020.09.010.
SANDERS J W, CHEN H S, JOHNSON J M, et al. Synthetic generation of DSC-MRI-derived relative CBV maps from DCE MRI of brain tumors[J]. Magn Reson Med, 2021, 85(1): 469-479. DOI: 10.1002/mrm.28432.
MANNING P, DAGHIGHI S, RAJARATNAM M K, et al. Differentiation of progressive disease from pseudoprogression using 3D PCASL and DSC perfusion MRI in patients with glioblastoma[J]. J Neurooncol, 2020, 147(3): 681-690. DOI: 10.1007/s11060-020-03475-y.
FU R W, SZIDONYA L, BARAJAS R F, et al. Diagnostic performance of DSC perfusion MRI to distinguish tumor progression and treatment-related changes: a systematic review and meta-analysis[J/OL]. Neurooncol Adv, 2022, 4(1): vdac027 [2022-08-14]. DOI: 10.1093/noajnl/vdac027.
BLIESENER Y, LEBEL R M, ACHARYA J, et al. Pseudo test-retest evaluation of millimeter-resolution whole-brain dynamic contrast-enhanced MRI in patients with high-grade glioma[J]. Radiology, 2021, 300(2): 410-420. DOI: 10.1148/radiol.2021203628.
QIU J, TAO Z C, DENG K X, et al. Diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging for distinguishing pseudoprogression from glioma recurrence: a meta-analysis[J]. Chin Med J (Engl), 2021, 134(21): 2535-2543. DOI: 10.1097/CM9.0000000000001445.
THOMAS A A, AREVALO-PEREZ J, KALEY T, et al. Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma[J]. J Neurooncol, 2015, 125(1): 183-190. DOI: 10.1007/s11060-015-1893-z.
CLUCERU J, NELSON S J, WEN Q T, et al. Recurrent tumor and treatment-induced effects have different MR signatures in contrast enhancing and non-enhancing lesions of high-grade gliomas[J]. Neuro Oncol, 2020, 22(10): 1516-1526. DOI: 10.1093/neuonc/noaa094.
SUH C H, KIM H S, JUNG S C, et al. Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis[J]. Eur Radiol, 2018, 28(6): 2628-2638. DOI: 10.1007/s00330-017-5262-5.
GOLAY X, HO M L. Multidelay ASL of the pediatric brain[J/OL]. Br J Radiol, 2022, 95(1134): 20220034 [2022-08-14]. DOI: 10.1259/bjr.20220034.
WANG Y L, CHEN S, XIAO H F, et al. Differentiation between radiation-induced brain injury and glioma recurrence using 3D pCASL and dynamic susceptibility contrast-enhanced perfusion-weighted imaging[J]. Radiother Oncol, 2018, 129(1): 68-74. DOI: 10.1016/j.radonc.2018.01.009.
RAZEK A A K A, EL-SEROUGY L, ABDELSALAM M, et al. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics[J]. Neuroradiology, 2018, 60(2): 169-177. DOI: 10.1007/s00234-017-1955-3.
WHITEHEAD M T, BLUML S. Proton and multinuclear spectroscopy of the pediatric brain[J]. Magn Reson Imaging Clin N Am, 2021, 29(4): 543-555. DOI: 10.1016/j.mric.2021.06.006.
WEINBERG B D, KURUVA M, SHIM H, et al. Clinical applications of magnetic resonance spectroscopy in brain tumors: from diagnosis to treatment[J]. Radiol Clin North Am, 2021, 59(3): 349-362. DOI: 10.1016/j.rcl.2021.01.004.
VERMA G, CHAWLA S, MOHAN S, et al. Three-dimensional echo planar spectroscopic imaging for differentiation of true progression from pseudoprogression in patients with glioblastoma[J/OL]. NMR Biomed, 2019, 32(2): e4042 [2022-08-14]. DOI: 10.1002/nbm.4042.
VAN DIJKEN B R J, VAN LAAR P J, HOLTMAN G A, et al. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis[J]. Eur Radiol, 2017, 27(10): 4129-4144. DOI: 10.1007/s00330-017-4789-9.
WU Y L, WOOD T C, ARZANFOROOSH F, et al. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T[J]. Magn Reson Mater Phy, 2022, 35(1): 63-73. DOI: 10.1007/s10334-021-00996-z.
NAKAJO M, BOHARA M, KAMIMURA K, et al. Correlation between amide proton transfer-related signal intensity and diffusion and perfusion magnetic resonance imaging parameters in high-grade glioma[J/OL]. Sci Rep, 2021, 11(1): 11223 [2022-08-14]. DOI: 10.1038/s41598-021-90841-z.
PARK Y W, AHN S S, KIM E H, et al. Differentiation of recurrent diffuse glioma from treatment-induced change using amide proton transfer imaging: incremental value to diffusion and perfusion parameters[J]. Neuroradiology, 2021, 63(3): 363-372. DOI: 10.1007/s00234-020-02542-5.
JIANG S S, EBERHART C G, LIM M, et al. Identifying recurrent malignant glioma after treatment using amide proton transfer-weighted MR imaging: a validation study with image-guided stereotactic biopsy[J]. Clin Cancer Res, 2019, 25(2): 552-561. DOI: 10.1158/1078-0432.CCR-18-1233.
LIU J, LI C, CHEN Y S, et al. Diagnostic performance of multiparametric MRI in the evaluation of treatment response in glioma patients at 3T[J]. J Magn Reson Imaging, 2020, 51(4): 1154-1161. DOI: 10.1002/jmri.26900.
SONG J, KADABA P, KRAVITZ A, et al. Multiparametric MRI for early identification of therapeutic response in recurrent glioblastoma treated with immune checkpoint inhibitors[J]. Neuro Oncol, 2020, 22(11): 1658-1666. DOI: 10.1093/neuonc/noaa066.
D'ESTE S H, NIELSEN M B, HANSEN A E. Visualizing glioma infiltration by the combination of multimodality imaging and artificial intelligence, a systematic review of the literature[J/OL]. Diagnostics (Basel), 2021, 11(4): 592 [2022-08-14]. DOI: 10.3390/diagnostics11040592.
FENG A Z, YUAN P P, HUANG T, et al. Distinguishing tumor recurrence from radiation necrosis in treated glioblastoma using multiparametric MRI[J]. Acad Radiol, 2022, 29(9): 1320-1331. DOI: 10.1016/j.acra.2021.11.008.
QUAN G, ZHANG K, LIU Y, et al. Role of dynamic susceptibility contrast perfusion MRI in glioma progression evaluation[J/OL]. J Oncol, 2021, 2021: 1696387 [2022-08-14]. DOI: 10.1155/2021/1696387.
SHI W W, QU C X, WANG X C, et al. Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression[J/OL]. Eur J Radiol, 2021, 144: 109941 [2022-08-14]. DOI: 10.1016/j.ejrad.2021.109941.
KIM J Y, PARK J E, JO Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients[J]. Neuro Oncol, 2019, 21(3): 404-414. DOI: 10.1093/neuonc/noy133.
ZHANG X, ZHANG B, LI M, et al. The role of differential diagnosis between radiation necrosis and glioma recurrence using multi-modality magnetic resonance imaging[J]. J China Clin Med Imaging, 2014, 25(10): 685-690.
YANG Y L, YANG Y J, WU X L, et al. Adding DSC PWI and DWI to BT-RADS can help identify postoperative recurrence in patients with high-grade gliomas[J]. J Neurooncol, 2020, 146(2): 363-371. DOI: 10.1007/s11060-019-03387-6.

PREV Advances in clinical and radiomics of distinguishing pseudoprogression and true progression in brain gliomas
NEXT Research progress of magnetic resonance imaging in Duchenne muscular dystrophy cardiomyopathy

Tel & Fax: +8610-67113815    E-mail: