Share this content in WeChat
Research progress of chemical exchange saturation transfer in neurodegenerative diseases
HAN Mingxing  LI Jun 

Cite this article as: HAN M X, LI J. Research progress of chemical exchange saturation transfer in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2023, 14(4): 126-131. DOI:10.12015/issn.1674-8034.2023.04.022.

[Abstract] Chemical exchange saturation transfer (CEST) imaging is an emerging magnetic resonance imaging technique that is widely studied around the world for its advantages of non-invasiveness, better spatial resolution, and higher sensitivity. Neurodegenerative diseases are less easily detected under conventional magnetic resonance techniques or are difficult to distinguish from other diseases. CEST technology has a wide range of application prospects in the study of neurodegenerative diseases, which can provide clinicians with more detailed and accurate lesion information, thereby promoting better intervention and management of neurodegenerative diseases. This article reviewd the basic principles of CEST technology and its application in early diagnosis, disease staging and differential diagnosis of neurodegenerative diseases, in order to promote the clinical application and development of CEST in neurodegenerative diseases.
[Keywords] neurodegenerative disease;Alzheimer's disease;Parkinson's disease;multiple sclerosis;chemical exchange saturation transfer imaging;magnetic resonance imaging

HAN Mingxing   LI Jun*  

Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China

Corresponding author: Li J, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Shandong Province (No. ZR2022MH064).
Received  2022-11-03
Accepted  2023-04-05
DOI: 10.12015/issn.1674-8034.2023.04.022
Cite this article as: HAN M X, LI J. Research progress of chemical exchange saturation transfer in neurodegenerative diseases[J]. Chin J Magn Reson Imaging, 2023, 14(4): 126-131. DOI:10.12015/issn.1674-8034.2023.04.022.

HOU Y J, DAN X L, BABBAR M, et al. Ageing as a risk factor for neurodegenerative disease[J]. Nat Rev Neurol, 2019, 15(10): 565-581. DOI: 10.1038/s41582-019-0244-7.
SHI Y Y, ZHANG L. Mitochondria and neurodegenerative disease[J]. J Biol, 2022, 39(2): 1-10. DOI: 10.3969/j.issn.2095-1736.2022.02.001.
CICIRELLI G, IMPEDOVO D, DENTAMARO V, et al. Human gait analysis in neurodegenerative diseases: a review[J]. IEEE J Biomed Health Inform, 2022, 26(1): 229-242. DOI: 10.1109/JBHI.2021.3092875.
LEE D W, WOO D C, HEO H, et al. Signal alterations of glutamate-weighted chemical exchange saturation transfer MRI in lysophosphatidylcholine-induced demyelination in the rat brain[J]. Brain Res Bull, 2020, 164: 334-338. DOI: 10.1016/j.brainresbull.2020.09.004.
CHEN L, VAN ZIJL P C M, WEI Z, et al. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging[J/OL]. Neuroimage, 2021, 236: 118071 [2022-11-02]. http:/// DOI: 10.1016/j.neuroimage.2021.118071.
ORAD R I, SHINER T. Differentiating dementia with Lewy bodies from Alzheimer's disease and Parkinson's disease dementia: an update on imaging modalities[J]. J Neurol, 2022, 269(2): 639-653. DOI: 10.1007/s00415-021-10402-2.
WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
JONES K M, POLLARD A C, PAGEL M D. Clinical applications of chemical exchange saturation transfer (CEST) MRI[J]. J Magn Reson Imaging, 2018, 47(1): 11-27. DOI: 10.1002/jmri.25838.
MAMOUNE K E, BARANTIN L, ADRIAENSEN H, et al. Application of chemical exchange saturation transfer (CEST) in neuroimaging[J/OL]. J Chem Neuroanat, 2021, 114: 101944 [2022-11-02]. http:/// DOI: 10.1016/j.jchemneu.2021.101944.
VAN ZIJL P C, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a Name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
DESMOND K L, STANISZ G J. Understanding quantitative pulsed CEST in the presence of MT[J]. Magn Reson Med, 2012, 67(4): 979-990. DOI: 10.1002/mrm.23074.
LI A X, HUDSON R H, BARRETT J W, et al. Four-pool modeling of proton exchange processes in biological systems in the presence of MRI-paramagnetic chemical exchange saturation transfer (PARACEST) agents[J]. Magn Reson Med, 2008, 60(5): 1197-1206. DOI: 10.1002/mrm.21752.
YAN S, LI M L, JIN Z Y. Principle and application progress of chemical exchange saturation transfer(CEST) technique[J]. Chin J Magn Reson Imaging, 2016, 7(4): 241-248. DOI: 10.12015/issn.1674-8034.2016.04.001.
ZHANG J X, ZHU W Z, TAIN R, et al. Improved differentiation of low-grade and high-grade gliomas and detection of tumor proliferation using APT contrast fitted from Z-spectrum[J]. Mol Imaging Biol, 2018, 20(4): 623-631. DOI: 10.1007/s11307-017-1154-y.
CHEN L, WEI Z, CHAN K W Y, et al. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI[J]. Neuroimage, 2019, 188: 380-390. DOI: 10.1016/j.neuroimage.2018.12.018.
HUANG J P, LAI J H C, TSE K H, et al. Deep neural network based CEST and AREX processing: application in imaging a model of Alzheimer's disease at 3 T[J]. Magn Reson Med, 2022, 87(3): 1529-1545. DOI: 10.1002/mrm.29044.
DOU W Q, LIN C E, DING H Y, et al. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies[J]. Quant Imaging Med Surg, 2019, 9(10): 1747-1766. DOI: 10.21037/qims.2019.10.03.
DESMOND K L, MOOSVI F, STANISZ G J. Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T[J]. Magn Reson Med, 2014, 71(5): 1841-1853. DOI: 10.1002/mrm.24822.
ZAISS M, SCHMITT B, BACHERT P. Quantitative separation of CEST effect from magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra[J]. J Magn Reson, 2011, 211(2): 149-155. DOI: 10.1016/j.jmr.2011.05.001.
CAI K J, SINGH A, POPTANI H, et al. CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor[J]. NMR Biomed, 2015, 28(1): 1-8. DOI: 10.1002/nbm.3216.
ZHANG X Y, WANG F, LI H, et al. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects[J/OL]. NMR Biomed, 2017, 30(7) [2022-11-02]. DOI: 10.1002/nbm.3716.
ORZYŁOWSKA A, OAKDEN W. Saturation transfer MRI for detection of metabolic and microstructural impairments underlying neurodegeneration in alzheimer's disease[J]. Brain Sci, 2021, 12(1): 53. DOI: 10.3390/brainsci12010053.
BJERKE M, ENGELBORGHS S. Cerebrospinal fluid biomarkers for early and differential alzheimer's disease diagnosis[J]. J Alzheimers Dis, 2018, 62(3): 1199-1209. DOI: 10.3233/JAD-170680.
TAI L M, KOSTER K P, LUO J, et al. Amyloid-β pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo[J/OL]. J Biol Chem, 2014, 289(44): 30538-30555 [2022-11-02]. DOI: 10.1074/jbc.M114.600833.
LIU Y X, LI J, JI H F, et al. Comparisons of glutamate in the brains of alzheimer's disease mice under chemical exchange saturation transfer imaging based on machine learning analysis[J/OL]. Front Neurosci, 2022, 16: 838157 [2022-11-02]. http:/// DOI: 10.3389/fnins.2022.838157.
GALE S A, ACAR D, DAFFNER K R. Dementia[J]. Am J Med, 2018, 131(10): 1161-1169. DOI: 10.1016/j.amjmed.2018.01.022.
OH J H, CHOI B G, RHEE H Y, et al. Added value of chemical exchange-dependent saturation transfer MRI for the diagnosis of dementia[J]. Korean J Radiol, 2021, 22(5): 770-781. DOI: 10.3348/kjr.2020.0700.
WANG C, LIN G, SHEN Z, et al. Angiopep-2 as an exogenous chemical exchange saturation transfer contrast agent in diagnosis of alzheimer's disease[J/OL]. J Healthc Eng, 2022, 2022: 7480519 [2022-11-02]. http:/// DOI: 10.1155/2022/7480519.
GOERKE S, ZAISS M, BACHERT P. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro[J]. NMR Biomed, 2014, 27(5): 507-518. DOI: 10.1002/nbm.3086.
HARIS M, SINGH A, CAI K J, et al. MICEST: a potential tool for non-invasive detection of molecular changes in Alzheimer's disease[J]. J Neurosci Methods, 2013, 212(1): 87-93. DOI: 10.1016/j.jneumeth.2012.09.025.
RUPSINGH R, BORRIE M, SMITH M, et al. Reduced hippocampal glutamate in alzheimer disease[J]. Neurobiol Aging, 2011, 32(5): 802-810. DOI: 10.1016/j.neurobiolaging.2009.05.002.
ALTINÉ-SAMEY R, ANTIER D, MAVEL S, et al. The contributions of metabolomics in the discovery of new therapeutic targets in Alzheimer's disease[J]. Fundam Clin Pharmacol, 2021, 35(3): 582-594. DOI: 10.1111/fcp.12654.
ZHAO Q, CHEN X Q, ZHOU Y. Quantitative multimodal multiparametric imaging in Alzheimer's disease[J]. Brain Inf, 2016, 3(1): 29-37. DOI: 10.1007/s40708-015-0028-9.
CHEN P, SHEN Z, WANG Q, et al. Reduced cerebral glucose uptake in an alzheimer's rat model with glucose-weighted chemical exchange saturation transfer imaging[J/OL]. Front Aging Neurosci, 2021, 13: 618690 [2022-11-02]. http:/// DOI: 10.3389/fnagi.2021.618690.
CHEN L, WEI Z L, CHAN K W, et al. D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI[J]. J Cereb Blood Flow Metab, 2021, 41(5): 1013-1025. DOI: 10.1177/0271678X20941264.
HUANG J, VAN ZIJL P C M, HAN X, et al. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI[J/OL]. Sci Adv, 2020, 6(20): eaba3884 [2022-11-02]. http:/// DOI: 10.1126/sciadv.aba3884.
REICH S G, SAVITT J M. Parkinson's Disease[J]. Med Clin North Am, 2019, 103(2): 337-350. DOI: 10.1016/j.mcna.2018.10.014.
JANKOVIC J, TAN E K. Parkinson's disease: etiopathogenesis and treatment[J]. J Neurol Neurosurg Psychiatry, 2020, 91(8): 795-808. DOI: 10.1136/jnnp-2019-322338.
YE H, ROBAK L A, YU M, et al. Genetics and pathogenesis of parkinson's syndrome[J]. Annu Rev Pathol, 2023, 18: 95-121. DOI: 10.1146/annurev-pathmechdis-031521-034145.
CEMBER A T J, NANGA R P R, REDDY R. Glutamate-weighted CEST (gluCEST) imaging for mapping neurometabolism: an update on the state of the art and emerging findings from in vivo applications[J/OL]. NMR Biomed, 2022 [2022-11-02]. http:/// DOI: 10.1002/nbm.4780.
BAGGA P, PICKUP S, CRESCENZI R, et al. In vivo GluCEST MRI: Reproducibility, background contribution and source of glutamate changes in the MPTP model of Parkinson's disease[J]. Sci Rep, 2018, 8(1): 2883. DOI: 10.1038/s41598-018-21035-3.
BAGGA P, CRESCENZI R, KRISHNAMOORTHY G, et al. Mapping the alterations in glutamate with GluCEST MRI in a mouse model of dopamine deficiency[J]. J Neurochem, 2016, 139(3): 432-439. DOI: 10.1111/jnc.13771.
LI C M, CHEN M, ZHAO X N, et al. Chemical exchange saturation transfer MRI signal loss of the substantia nigra as an imaging biomarker to evaluate the diagnosis and severity of parkinson's disease[J/OL]. Front Neurosci, 2017, 11: 489 [2022-11-02]. http:/// DOI: 10.3389/fnins.2017.00489.
MENNECKE A, KHAKZAR K M, GERMAN A, et al. 7 fortricks 7 T CEST: improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease[J/OL]. NMR Biomed, 2022 [2022-11-02]. http:/// DOI: 10.1002/nbm.4717.
OLEK M J. Multiple sclerosis[J/OL]. Ann Intern Med, 2021, 174(6): ITC81-ITC96 [2022-11-02]. DOI: 10.7326/AITC202106150.
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted imaging shows differences in multiple sclerosis lesions and white matter hyperintensities of presumed vascular origin[J/OL]. Front Neurol, 2019, 10: 1307 [2022-11-02]. http:/// DOI: 10.3389/fneur.2019.01307.
THOMAS A M, YANG E, SMITH M D, et al. CEST MRI and MALDI imaging reveal metabolic alterations in the cervical lymph nodes of EAE mice[J/OL]. J Neuroinflammation, 2022, 19(1): 130 [2022-11-02]. DOI: 10.1186/s12974-022-02493-z.
LIU T, CHEN Y R, THOMAS A M, et al. CEST MRI with distribution-based analysis for assessment of early stage disease activity in a mouse model of multiple sclerosis: an initial study[J/OL]. NMR Biomed, 2019, 32(11): e4139 [2022-11-02]. http:/// DOI: 10.1002/nbm.4139.
ROSS C A, TABRIZI S J. Huntington's disease: from molecular pathogenesis to clinical treatment[J]. Lancet Neurol, 2011, 10(1): 83-98. DOI: 10.1016/S1474-4422(10)70245-3.
PÉPIN J, FRANCELLE L, CARRILLO-DE SAUVAGE M A, et al. In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease[J]. Neuroimage, 2016, 139: 53-64. DOI: 10.1016/j.neuroimage.2016.06.023.
PÉPIN J, DE LONGPREZ L, TROVERO F, et al. Complementarity of gluCEST and 1H-MRS for the study of mouse models of Huntington's disease[J/OL]. NMR Biomed, 2020, 33(7): e4301 [2022-11-02]. http:/// DOI: 10.1002/nbm.4301.
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.

PREV MRI advances of hippocampus in adolescents with depression
NEXT Progress of BOLD-fMRI study on rehabilitation of motor dysfunction in ischemic stroke treated with acupuncture

Tel & Fax: +8610-67113815    E-mail: