Share this content in WeChat
Clinical Article
The value of apparent diffusion coefficient value in differentiating the Luminal-type and non-Luminal-type breast cancer and evaluating tumor cell proliferation activity
LIU Hong  LIU Xianwang  LIU Guangyao  ZHOU Jie  ZHOU Junlin 

Cite this article as: LIU H, LIU X W, LIU G Y, et al. The value of apparent diffusion coefficient value in differentiating the Luminal-type and non-Luminal-type breast cancer and evaluating tumor cell proliferation activity[J]. Chin J Magn Reson Imaging, 2023, 14(4): 51-56. DOI:10.12015/issn.1674-8034.2023.04.010.

[Abstract] Objective To explore the efficacy of apparent diffusion coefficient (ADC) in distinguishing between Luminal and non-Luminal breast cancer and its correlation with Ki-67 proliferation index.Materials and Methods Eighty-eight cases of Luminal breast cancers and 30 cases of non-Luminal breast cancers were confirmed pathologically, and their Ki-67 proliferation index was assessed through immunohistochemistry. The minimum ADC value (ADCmin), the mean ADC value (ADCmean), and the ADC value of the corresponding contralateral normal breast gland tissue were measured on the ADC map. Additionally, the relative minimum ADC value (rADCmin) and the relative mean ADC value (rADCmean) were calculated. The differences in ADC values between the luminal and non-luminal breast cancer groups were compared, and the receiver operating characteristic (ROC) curves were drawn. Then, the differential efficacy of ADC values on luminal and non-luminal breast cancer and the correlation between ADC values and Ki-67 proliferation index were analyzed.Results The ADCmin, ADCmean, rADCmin, and rADCmean values of the Luminal breast cancer group were lower than those in the non-Luminal breast cancer group, and the differences were statistically significant (P<0.05). The ROC results showed that each ADC value could effectively distinguish between Luminal type and non-Luminal type of breast cancer. Among them, rADCmin had the best discriminatory efficiency. The optimal cut-off value was 0.599, and the corresponding area under the curve (AUC), sensitivity, and specificity were 0.796 [95% (confidence interval, CI): 0.712-0.864], 90.91% (95% CI: 82.90%-96.00%), and 63.33% (95% CI: 43.90%-80.10%), respectively. There were different degrees of negative correlation between ADCmin, ADCmean, rADCmin, and rADCmean, and Ki-67 proliferation index [r=-0.343 (95% CI: -0.493--0.173), r=-0.474 (95% CI: -0.603--0.321), r=-0.325 (95% CI: -0.478--0.154), r=-0.322 (95% CI: -0.475--0.150), all with P<0.05].Conclusions The ADC values can be used to distinguish between Luminal type and non-Luminal type breast cancer, and they can also have some value for assessing the proliferative activity of tumor cells.
[Keywords] breast cancer;Luminal;magnetic resonance imaging;apparent diffusion coefficient;Ki-67 proliferation index;differentiate

LIU Hong   LIU Xianwang   LIU Guangyao   ZHOU Jie   ZHOU Junlin*  

Radiology Department of Lanzhou University Second Hospital, Second Clinical School of Lanzhou University, Key Laboratory of Medical Imaging of Gansu Province, Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou 730030, China

Corresponding author: Zhou JL, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82260361).
Received  2022-10-26
Accepted  2023-04-07
DOI: 10.12015/issn.1674-8034.2023.04.010
Cite this article as: LIU H, LIU X W, LIU G Y, et al. The value of apparent diffusion coefficient value in differentiating the Luminal-type and non-Luminal-type breast cancer and evaluating tumor cell proliferation activity[J]. Chin J Magn Reson Imaging, 2023, 14(4): 51-56. DOI:10.12015/issn.1674-8034.2023.04.010.

HE J, CHEN W Q, LI N, et al. China guideline for the screening and early detection of female breast cancer (2021, Beijing)[J]. China Cancer, 2021, 30(3): 161-191. DOI: 10.11735/j.issn.1004-0242.2021.03.A001.
VALKO-ROKYTOVSKÁ M, OČENÁŠ P, SALAYOVÁ A, et al. Breast cancer: targeting of steroid hormones in cancerogenesis and diagnostics[J/OL]. Int J Mol Sci, 2021, 22(11): 5878 [2023-03-29]. DOI: 10.3390/ijms22115878.
BURSTEIN H J. Systemic therapy for estrogen receptor-positive, HER2-negative breast cancer[J]. N Engl J Med, 2020, 383(26): 2557-2570. DOI: 10.1056/NEJMra1307118.
CLUSAN L, LE GOFF P, FLOURIOT G, et al. A closer look at estrogen receptor mutations in breast cancer and their implications for estrogen and antiestrogen responses[J/OL]. Int J Mol Sci, 2021, 22(2): 756 [2023-03-29]. DOI: 10.3390/ijms22020756.
FARCAS A M, NAGARAJAN S, COSULICH S, et al. Genome-wide estrogen receptor activity in breast cancer[J/OL]. Endocrinology, 2021, 162(2): bqaa224 [2023-03-29]. DOI: 10.1210/endocr/bqaa224.
DERAKHSHAN F, REIS-FILHO J S. Pathogenesis of triple-negative breast cancer[J]. Annu Rev Pathol, 2022, 17: 181-204. DOI: 10.1146/annurev-pathol-042420-093238.
MORI N, OTA H, MUGIKURA S, et al. Luminal-type breast cancer: correlation of apparent diffusion coefficients with the Ki-67 labeling index[J]. Radiology, 2015, 274(1): 66-73. DOI: 10.1148/radiol.14140283.
KONTZOGLOU K, PALLA V, KARAOLANIS G, et al. Correlation between Ki67 and breast cancer prognosis[J]. Oncology, 2013, 84(4): 219-225. DOI: 10.1159/000346475.
KOBAYASHI T, IWAYA K, MORIYA T, et al. A simple immunohistochemical panel comprising 2 conventional markers, Ki67 and p53, is a powerful tool for predicting patient outcome in luminal-type breast cancer[J/OL]. BMC Clin Pathol, 2013, 13: 5 [2023-03-29]. DOI: 10.1186/1472-6890-13-5.
VIALE G, GIOBBIE-HURDER A, REGAN M M, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1-98 comparing adjuvant tamoxifen with letrozole[J]. J Clin Oncol, 2008, 26(34): 5569-5575. DOI: 10.1200/JCO.2008.17.0829.
KAZAMA T, KUROKI Y, KIKUCHI M, et al. Diffusion-weighted MRI as an adjunct to mammography in women under 50 years of age: an initial study[J]. J Magn Reson Imaging, 2012, 36(1): 139-144. DOI: 10.1002/jmri.23626.
YILDIZ S, TOPRAK H, ERSOY Y E, et al. Contribution of diffusion-weighted imaging to dynamic contrast-enhanced MRI in the characterization of papillary breast lesions[J]. Breast J, 2018, 24(2): 176-179. DOI: 10.1111/tbj.12861.
MORI N, INOUE C, TAMURA H, et al. Apparent diffusion coefficient and intravoxel incoherent motion-diffusion kurtosis model parameters in invasive breast cancer: correlation with the histological parameters of whole-slide imaging[J]. Magn Reson Imaging, 2022, 90: 53-60. DOI: 10.1016/j.mri.2022.04.003.
CATALANO O A, HORN G L, SIGNORE A, et al. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype[J]. Br J Cancer, 2017, 116(7): 893-902. DOI: 10.1038/bjc.2017.26.
SUO S T, ZHANG D D, CHENG F, et al. Added value of mean and entropy of apparent diffusion coefficient values for evaluating histologic phenotypes of invasive ductal breast cancer with MR imaging[J]. Eur Radiol, 2019, 29(3): 1425-1434. DOI: 10.1007/s00330-018-5667-9.
LIU Y L, ZHANG R, LU D M, et al. Correlations of whole volume intravoxel incoherent motion-diffusion weighted imaging (IVIM-DWI) histogram quantitative parameters and ER, PR and HER-2 expression in breast cancer[J]. Chin J Med Imaging Technol, 2021, 37(3): 380-385. DOI: 10.13929/j.issn.1003-3289.2021.03.017.
LIU Y L, ZHANG R, YUE L N, et al. Correlation between MM-DWI quantitative parameter histogram and Ki-67 proliferation index of breast cancer[J]. Chin J Magn Reson Imaging, 2020, 11(2): 118-123. DOI: 10.12015/issn.1674-8034.2020.02.009.
LI L, ZHENG Y R, ZHANG J, et al. Study on the correlation between MRI parameters and pathological grade and lymph node metastasis in triple-negative breast cancer[J]. Chin Imaging J Integr Tradit West Med, 2020, 18(4): 374-378. DOI: 10.3969/j.issn.1672-0512.2020.04.014.
National Health Commission of the People's Republic Of China. Guidelines for the diagnosis and treatment of breast cancer (2022 edition)[J]. China Licens Pharm, 2022, 19(10): 1-26. DOI: 10.3969/j.issn.2096-3327.2022.10.001.
Breast Cancer Expert Panel. Guideline for HER2 detection in breast cancer, the 2019 version[J]. Chin J Pathol, 2019, 48(3): 169-175. DOI: 10.3760/cma.j.issn.0529-5807.2019.03.001.
ZHAO Y, DENG X. Biological subtype of breast cancer and treatment as well as prognosis[J]. Chin J Pract Surg, 2015, 35(7): 704-708. DOI: 10.7504/CJPS.ISSN1005-2208.2015.07.04.
NIJIATI M, AIHAITI D, HUOJIA A, et al. MRI-based radiomics for preoperative prediction of lymphovascular invasion in patients with invasive breast cancer[J/OL]. Front Oncol, 2022, 12: 876624 [2023-03-29]. DOI: 10.3389/fonc.2022.876624.
BALTZER P, MANN R M, IIMA M, et al. Diffusion-weighted imaging of the breast—a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group[J]. Eur Radiol, 2020, 30(3): 1436-1450. DOI: 10.1007/s00330-019-06510-3.
LEITHNER D, MOY L, MORRIS E A, et al. Abbreviated MRI of the breast: does it provide value?[J/OL]. J Magn Reson Imaging, 2019, 49(7): e85-e100 [2023-03-29]. DOI: 10.1002/jmri.26291.
SRIRAMAN S K, ARYASOMAYAJULA B, TORCHILIN V P. Barriers to drug delivery in solid tumors[J/OL]. Tissue Barriers, 2014, 2: e29528 [2023-03-29]. DOI: 10.4161/tisb.29528.
BROWN J M, GIACCIA A J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy[J]. Cancer Res, 1998, 58(7): 1408-1416.
JANU E, KRIKAVOVA L, LITTLE J, et al. Prospective evaluation of contrast-enhanced ultrasound of breast BI-RADS 3-5 lesions[J/OL]. BMC Med Imaging, 2020, 20(1): 66 [2023-03-29]. DOI: 10.1186/s12880-020-00467-2.
KUO W H, CHEN C N, HSIEH F J, et al. Vascularity change and tumor response to neoadjuvant chemotherapy for advanced breast cancer[J]. Ultrasound Med Biol, 2008, 34(6): 857-866. DOI: 10.1016/j.ultrasmedbio.2007.11.011.
ZHANG J J, WANG G H, REN J L, et al. Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma[J]. Eur Radiol, 2022, 32(6): 4079-4089. DOI: 10.1007/s00330-021-08504-6.
OHLMEYER S, LAUN F B, BICKELHAUPT S, et al. Ultra-high b-value diffusion-weighted imaging-based abbreviated protocols for breast cancer detection[J]. Invest Radiol, 2021, 56(10): 629-636. DOI: 10.1097/RLI.0000000000000784.
LEE S H, SHIN H J, MOON W K. Diffusion-weighted magnetic resonance imaging of the breast: standardization of image acquisition and interpretation[J]. Korean J Radiol, 2021, 22(1): 9-22. DOI: 10.3348/kjr.2020.0093.
ZHANG J, HUANG Y B, CHEN J H, et al. Potential of combination of DCE-MRI and DWI with serum CA125 and CA199 in evaluating effectiveness of neoadjuvant chemotherapy in breast cancer[J/OL]. World J Surg Oncol, 2021, 19(1): 284 [2023-03-29]. DOI: 10.1186/s12957-021-02398-w.
ZHAI G H, GRUBBS C J, STOCKARD C R, et al. Diffusion weighted imaging evaluated the early therapy effect of tamoxifen in an MNU-induced mammary cancer rat model[J/OL]. PLoS One, 2013, 8(5): e64445 [2023-03-29]. DOI: 10.1371/journal.pone.0064445.
LIU X W, KE X A, ZHOU Q, et al. The value of apparent diffusion coefficient value in evaluating the IDH-1 mutation status and tumor cell proliferation activity of lower-grade gliomas[J]. Chin J Magn Reson Imaging, 2022, 13(8): 13-18. DOI: 10.12015/issn.1674-8034.2022.08.003.
DENKERT C, LOIBL S, MÜLLER B M, et al. Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: a translational investigation in the neoadjuvant GeparTrio trial[J]. Ann Oncol, 2013, 24(11): 2786-2793. DOI: 10.1093/annonc/mdt350.
PILLAI K, POURGHOLAMI M H, CHUA T C, et al. Prognostic significance of Ki67 expression in malignant peritoneal mesothelioma[J]. Am J Clin Oncol, 2015, 38(4): 388-394. DOI: 10.1097/COC.0b013e3182a0e867.
RICHARDS-TAYLOR S, EWINGS S M, JAYNES E, et al. The assessment of Ki-67 as a prognostic marker in neuroendocrine tumours: a systematic review and meta-analysis[J]. J Clin Pathol, 2016, 69(7): 612-618. DOI: 10.1136/jclinpath-2015-203340.
WANG Y T, BAI G J, ZHANG X, et al. Correlation analysis of apparent diffusion coefficient value and P53 and Ki-67 expression in esophageal squamous cell carcinoma[J]. Magn Reson Imaging, 2020, 68: 183-189. DOI: 10.1016/j.mri.2020.01.011.
QIAN J F, ZHANG R, ZHAO L, et al. Study on the correlation between MRI diffusion-weighted imaging apparent diffusion coefficient and Ki-67 index of triple negative and non-triple negative breast cancer[J]. Chin J Magn Reson Imaging, 2021, 12(5): 69-72. DOI: 10.12015/issn.1674-8034.2021.05.015.

PREV Comprehensive analysis of carotid body tumor complicated with carotid artery by high resolution magnetic resonance vascular wall imaging
NEXT Predictive value of DCE-MRI features of breast cancer on hormone receptor, HER-2 and triple negative breast cancer

Tel & Fax: +8610-67113815    E-mail: