Share this content in WeChat
Clinical Article
Study on quantitative monitoring of occult injury in normal white matter regions of WMHs with different Fazekas based on DTI combined with ASL technique
CHANG Xiaoxia  LI Xiangsheng  JIANG Ruijing  SUN Peng  ZHANG Jinlong  FAN Hongxia 

Cite this article as: CHANG X X, LI X S, JIANG R J, et al. Study on quantitative monitoring of occult injury in normal white matter regions of WMHs with different Fazekas based on DTI combined with ASL technique[J]. Chin J Magn Reson Imaging, 2023, 14(4): 22-28. DOI:10.12015/issn.1674-8034.2023.04.005.

[Abstract] Objective To investigate the value of diffusion tensor imaging (DTI) and arterial spin labelling (ASL) technique in the quantitative evaluation of occult injury in the white matter regions of white matter hyperintensities (WMHs) patients with different Fazekas scores.Materials and Methods The routine MRI, DTI and ASL imaging were performed in 80 cases of WMHs and 30 normal subjects. The functional parameters were compared among different Fazekas scores of WMHs in the normal white matter regions in frontal subcortical, temporal subcortical, anterior horn and trigonal of lateral ventricle, corona radiata and centrum semioval. The patients were divided into three groups according to Fazekas score: Group A (0 point), Group B (1-3 points) and Group C (4-6 points).Results Compared with group A or B, group C had higher apparent diffusion coefficient (ADC) value in bilateral anterior horn of lateral ventricles, trigonal of lateral ventricles and corona radiata regions, and had lower fractional anisotropy (FA)value around bilateral anterior horn of lateral ventricles and trigonal of right lateral ventricle regions (P<0.05). Group C had lower cerebral blood flow (CBF) around bilateral trigonal of lateral ventricles and corona radiata regions (P<0.05). The ADC value were negatively correlated with CBF value in the normal white matter area around left frontal subcortical, right corona radiata, right centrum semiovale, anterior horn of bilateral lateral ventricles and trigonal of bilateral lateral ventricles regions (r=-0.326,-0.21,-0.282,-0.443,-0.429,-0.357,-0.383). There was a positive correlation between FA and CBF in the white matter area around the anterior horn of bilateral lateral ventricles regions (r=0.477, 0.268).Conclusions When the WMHs score ranges 4-6 points, DTI combined with ASL imaging can sensitively identify the occult injury in normal white matter areas. The most sensitive area is located in the normal white matter area around the ventricle.
[Keywords] white matter hyperintensity;magnetic resonance imaging;diffusion tensor imaging;arterial spin labeling;Fazekas scale

CHANG Xiaoxia1, 2   LI Xiangsheng2*   JIANG Ruijing2   SUN Peng2   ZHANG Jinlong2   FAN Hongxia2  

1 Hebei North University, Zhangjiakou 075000, China

2 Department of Radiology, Air Force Medical Center of Chinese People's Liberation Army, Beijing 100142, China

Corresponding author: Li XS, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Major Problems in Aeromedicine Science and Technology Project (No. 2020ZTB07).
Received  2022-10-13
Accepted  2023-04-06
DOI: 10.12015/issn.1674-8034.2023.04.005
Cite this article as: CHANG X X, LI X S, JIANG R J, et al. Study on quantitative monitoring of occult injury in normal white matter regions of WMHs with different Fazekas based on DTI combined with ASL technique[J]. Chin J Magn Reson Imaging, 2023, 14(4): 22-28. DOI:10.12015/issn.1674-8034.2023.04.005.

ALBER J, ALLADI S, BAE H J, et al. White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities[J]. Alzheimers Dement (N Y), 2019, 5: 107-117. DOI: 10.1016/j.trci.2019.02.001.
BAUER C E, ZACHARIOU V, SEAGO E, et al. White Matter Hyperintensity Volume and Location: Associations With WM Microstructure, Brain Iron, and Cerebral Perfusion[J/OL]. Front Aging Neurosci, 2021, 13: 617947 [2022-05-15]. DOI: 10.3389/fnagi.2021.617947.
MENG F, YANG Y, JIN G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment[J/OL]. Front Neurol, 2022, 13: 865920 [2022-05-15]. DOI: 10.3389/fneur.2022.865920.
CAI J, SUN J, CHEN H, et al. Different mechanisms in periventricular and deep white matter hyperintensities in old subjects[J/OL]. Front Aging Neurosci, 2022, 14: 940538 [2022-05-15]. DOI: 10.3389/fnagi.2022.940538.
QIU Y, YU L, GE X, et al. Loss of Integrity of Corpus Callosum White Matter Hyperintensity Penumbra Predicts Cognitive Decline in Patients With Subcortical Vascular Mild Cognitive Impairment[J/OL]. Front Aging Neurosci, 2021, 13: 605900 [2022-05-15]. DOI: 10.3389/fnagi.2021.605900.
ZHONG G, ZHANG R, JIAERKEN Y, et al. Better Correlation of Cognitive Function to White Matter Integrity than to Blood Supply in Subjects with Leukoaraiosis[J/OL]. Front Aging Neurosci, 2017, 9: 185 [2022-05-15]. DOI: 10.3389/fnagi.2017.00185.
KEŘKOVSKÝ M, STULÍK J, DOSTÁL M, et al. Structural and functional MRI correlates of T2 hyperintensities of brain white matter in young neurologically asymptomatic adults[J]. Eur Radiol, 2019, 29(12): 7027-7036. DOI: 10.1007/s00330-019-06268-8.
OTA Y, SHAH G. Imaging of Normal Brain Aging[J]. Neuroimaging Clin N Am, 2022, 32(3): 683-698. DOI: 10.1016/j.nic.2022.04.010.
LIU K, WANG X, ZHANG T, et al. Cortical Short-Range Fiber Connectivity and Its Association With Deep Brain White Matter Hyperintensities in Older Diabetic People With Low Serum Vitamin B12[J/OL]. Front Aging Neurosci, 2022, 14: 754997 [2022-05-15]. DOI: 10.3389/fnagi.2022.754997.
YANG D, HUANG L, LUO C, et al. Impaired Structural Network Properties Caused by White Matter Hyperintensity Related to Cognitive Decline[J/OL]. Front Neurol, 2020, 11: 250 [2022-05-15]. DOI: 10.3389/fneur.2020.00250.
CARNEVALE L, D'ANGELOSANTE V, LANDOLFI A, et al. Brain MRI fiber-tracking reveals white matter alterations in hypertensive patients without damage at conventional neuroimaging[J]. Cardiovasc Res, 2018, 114(11): 1536-1546. DOI: 10.1093/cvr/cvy104.
PROMJUNYAKUL N, LAHNA D, KAYE J A, et al. Characterizing the white matter hyperintensity penumbra with cerebral blood flow measures[J]. Neuroimage Clin, 2015, 8: 224-229. DOI: 10.1016/j.nicl.2015.04.012.
ZHU S, QIAN S, XU T, et al. White Matter Hyperintensity, Immediate Antihypertensive Treatment, and Functional Outcome After Acute Ischemic Stroke[J]. Stroke, 2020, 51(5): 1608-1612. DOI: 10.1161/strokeaha.119.028841.
ZHANG M M, CHEN H M, LIU G L, et al. Effect of white matter hyperintensities on motor symptoms and cognitive impairment in PD patient[J]. Chin J Geriatr Heart Brain Vessel Dis, 2020, 22(1): 47-51. DOI: 10.3969/j.issn.1009-0126.2020.01.013.
HUANG H, ZHAO K, ZHU W, et al. Abnormal Cerebral Blood Flow and Functional Connectivity Strength in Subjects With White Matter Hyperintensities[J/OL]. Front Neurol, 2021, 12: 752762 [2022-05-15]. DOI: 10.3389/fneur.2021.752762.
LIU C, ZOU L, TANG X, et al. Changes of white matter integrity and structural network connectivity in nondemented cerebral small-vessel disease[J]. J Magn Reson Imaging, 2020, 51(4): 1162-1169. DOI: 10.1002/jmri.26906.
WARTOLOWSKA K A, WEBB A J S. Blood Pressure Determinants of Cerebral White Matter Hyperintensities and Microstructural Injury: UK Biobank Cohort Study[J]. Hypertension, 2021, 78(2): 532-539. DOI: 10.1161/HYPERTENSIONAHA.121.17403.
LOPE-PIEDRAFITA S. Diffusion Tensor Imaging (DTI)[J]. Methods in molecular biology (Clifton, NJ), 2018, 1718: 103-116. DOI: 10.1007/978-1-4939-7531-0_7.
LI X T, WANG K, AI L. Preliminary study of diffusion tensor imaging and 18FAV1451 PET tau protein brain imaging in the diagnosis and differentialdiagnosis of MCI[J]. Chin J Magn Reson Imaging, 2022, 13(4): 5-14. DOI: 10.12015/issn.1674-8034.2022.04.002.
MIN Z G, SHAN H R, XU L, et al. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities[J/OL]. BMC Neurol, 2021, 21(1): 128 [2022-05-20]. DOI: 10.1186/s12883-021-02140-9.
MUNOZ MANIEGA S, MEIJBOOM R, CHAPPELL F M, et al. Spatial Gradient of Microstructural Changes in Normal-Appearing White Matter in Tracts Affected by White Matter Hyperintensities in Older Age[J/OL]. Front Neurol, 2019, 10: 784 [2022-05-20]. DOI: 10.3389/fneur.2019.00784.
LIU J P, ZHAO H, GAO M Y, et al. Arterial spin labeling and DTI in evaluation on cerebral perfusion and white matter of cerebral small vessel disease patient[J]. Chin J Med Imaging Technol, 2016, 32(8): 1170-1174. DOI: 10.13929/j.1003-3289.2016.08.006.
VANGBERG T R, EIKENES L, HABERG A K. The effect of white matter hyperintensities on regional brain volumes and white matter microstructure, a population-based study in HUNT[J/OL]. Neuroimage, 2019, 203: 116158 [2022-05-30]. DOI: 10.1016/j.neuroimage.2019.116158.
DOLUI S, TISDALL D, VIDORRETA M, et al. Characterizing a perfusion-based periventricular small vessel region of interest[J/OL]. Neuroimage Clin, 2019, 23: 101897 [2022-05-30]. DOI: 10.1016/j.nicl.2019.101897.
HABES M, SOTIRAS A, ERUS G, et al. White matter lesions: Spatial heterogeneity, links to risk factors, cognition, genetics, and atrophy[J/OL]. Neurology, 2018, 91(10): e964-e975 [2022-05-30]. DOI: 10.1212/WNL.0000000000006116.
VERGOOSSEN L W M, JANSEN J F A, VAN SLOTEN T T, et al. Interplay of White Matter Hyperintensities, Cerebral Networks, and Cognitive Function in an Adult Population: Diffusion-Tensor Imaging in the Maastricht Study[J]. Radiology, 2021, 298(2): 384-392. DOI: 10.1148/radiol.2021202634.
MARTIN-NOGUEROL T, KIRSCH C F E, MONTESINOS P, et al. Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications[J]. Neuroradiology, 2021, 63(12): 1969-1983. DOI: 10.1007/s00234-021-02772-1.
STEWART C R, STRINGER M S, SHI Y, et al. Associations Between White Matter Hyperintensity Burden, Cerebral Blood Flow and Transit Time in Small Vessel Disease: An Updated Meta-Analysis[J/OL]. Front Neurol, 2021, 12: 647848 [2022-05-30]. DOI: 10.3389/fneur.2021.647848.
GUO H M, LV F J. Research progresses of MRI in white matter hyperintensity[J]. Chin J Magn Reson Imaging, 2018, 9(7): 539-544. DOI: 10.12015/issn.1674-8034.2018.07.010.
YU S, MA S J, LIEBESKIND D S, et al. Reperfusion Into Severely Damaged Brain Tissue Is Associated With Occurrence of Parenchymal Hemorrhage for Acute Ischemic Stroke[J/OL]. Front Neurol, 2020, 11: 586 [2022-05-25]. DOI: 10.3389/fneur.2020.00586.
HUANG C J, YUAN X, SUN Z W. Research advances in arterial spin labeling technology in white matter hyperintensities of vascular origin[J]. Journal of International Neurology and Neurosurgery, 2020, 47(4): 430-434. DOI: 10.16636/j.cnki.jinn.2020.04.019.
FERRIS J K, GREELEY B, VAVASOUR I M, et al. In vivo myelin imaging and tissue microstructure in white matter hyperintensities and perilesional white matter[J/OL]. Brain Commun, 2022, 4(3): fcac142 [2022-06-01]. DOI: 10.1093/braincomms/fcac142.
HUANG H T, TUNG T H, LIN M, et al. Characterizing spatiotemporal progression and prediction of infarct lesion volumes in experimental acute ischemia using quantitative perfusion and diffusion imaging[J/OL]. Appl Radiat Isot, 2021, 168: 109522 [2022-05-30]. DOI: 10.1016/j.apradiso.2020.109522.
SHEN X, RAGHAVAN S, PRZYBELSKI S A, et al. Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities[J/OL]. Neuroimage Clin, 2022, 35: 103077 [2022-05-30]. DOI: 10.1016/j.nicl.2022.103077.

PREV Meta analysis of correlation between characteristics of vulnerable intracranial plaque and occurrence and recurrence of ischemic stroke
NEXT Clinical value of high-resolution compressed sensing TOF-MRA in assessing Suzuki classification and the dilatation of hemorrhage related vascular in patients with moyamoya disease

Tel & Fax: +8610-67113815    E-mail: