Share this content in WeChat
Clinical Article
Dynamic changes of spontaneous neural activity in the brain of patients with minimal hepatic encephalopathy: A preliminary study of resting-state functional magnetic resonance imaging
ZHENG Jiarui  WANG Minglei  YANG Xuhong  MA Wanlong  LIU Shan  MA Wenfu  DING Xiangchun  WANG Xiaodong 

Cite this article as: ZHENG J R, WANG M L, YANG X H, et al. Dynamic changes of spontaneous neural activity in the brain of patients with minimal hepatic encephalopathy: A preliminary study of resting-state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(4): 6-10, 40. DOI:10.12015/issn.1674-8034.2023.04.002.

[Abstract] Objective This study attempted to investigate the abnormal dynamic characteristics of regional neural activity in minimal hepatic encephalopathy (MHE) patients and to assess whether altered dynamic regional indices are associated with clinical behavior in MHE patients.Materials and Methods A total of 25 healthy volunteers (the control group) and 28 MHE patients were enrolled in this study, followed by resting-stated functional magnetic resonance imaging and number connection test A (NCT-A), digit symbol test (DST), Montreal Cognitive Assessment (MoCA) scale. A sliding time window was used to calculate the temporal variability of dynamic regional homogeneity (dReHo) to assess the temporal dynamics of the dReHo in MHE. Using Pearson correlation. The correlations between the variability of dReHo and NCT-A, DST, MoCA were performed.Results Between the control group and the MHE group, the NCT-A (t=-7.906, P<0.01), DST(t=9.380, P<0.01) and MoCA (t=7.508, P<0.01) scale scores were significantly different. The left middle frontal gyrus, left inferior frontal gyrus, left globus pallidus, left hippocampus, right middle frontal gyrus and right inferior temporal gyrus were significantly different in the MHE group compared with the control group. The dReHo were higher in the MHE group than in the control group (Gaussian random field corrected, P<0.05). Correlation analysis showed that MoCA scale scores were negatively correlated with dReHo values in the right middle frontal gyrus (r=-0.50, P<0.05), and positively correlated with the right inferior temporal gyrus (r=0.70, P<0.05).Conclusions The intrinsic brain activity variability pattern of MHE patients changed, dReHo has potential value in understanding the neurophysiological mechanisms of MHE and its diagnosis.
[Keywords] minimal hepatic encephalopathy;resting-state functional magnetic resonance imaging;magnetic resonance imaging;cognitive function;dynamic regional homogeneity;nerve activity

ZHENG Jiarui1   WANG Minglei2   YANG Xuhong1   MA Wanlong3   LIU Shan2   MA Wenfu1   DING Xiangchun3   WANG Xiaodong2, 4*  

1 Ningxia Medical University School of Clinical Medicine, Yinchuan 750004, China

2 Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan 750004, China

3 Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan 750004, China

4 Key Laboratory of Craniocerebral Diseases of Ningxia Medical University, Yinchuan 750004, China

Corresponding author: Wang XD, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS Natural Science Foundation of Ningxia Hui Autonomous Region (No. 2022AAC03487); Science and Technology Key Research Program of Ningxia Hui Autonomous Region (No. 2019BEG03037).
Received  2022-12-07
Accepted  2023-04-14
DOI: 10.12015/issn.1674-8034.2023.04.002
Cite this article as: ZHENG J R, WANG M L, YANG X H, et al. Dynamic changes of spontaneous neural activity in the brain of patients with minimal hepatic encephalopathy: A preliminary study of resting-state functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(4): 6-10, 40. DOI:10.12015/issn.1674-8034.2023.04.002.

LIERE V, SANDHU G, DEMORROW S. Recent advances in hepatic encephalopathy[J/OL]. F1000Res, 2017, 6: 1637 [2022-12-06]. DOI: 10.12688/f1000research.11938.1.
DELLATORE P, CHEUNG M, MAHPOUR N Y, et al. Clinical Manifestations of Hepatic Encephalopathy[J]. Clin Liver Dis, 2020, 24(2): 189-196. DOI: 10.1016/j.cld.2020.01.010.
BAJAJ J S, DUARTE-ROJO A, XIE J J, et al. Minimal Hepatic Encephalopathy and Mild Cognitive Impairment Worsen Quality of Life in Elderly Patients With Cirrhosis[J]. Clin Gastroenterol Hepatol, 2020, 18(13): 3008-3016. DOI: 10.1016/j.cgh.2020.03.033.
Cheng Y, Zhang G Y, Zhang X D, et al. Identification of minimal hepatic encephalopathy based on dynamic functional connectivity[J]. Brain Imaging Behav, 2021, 15(5): 2637-2645. DOI: 10.1007/S11682-021-00468-X.
SHAO Y Y, LIU Y, JIANG L F, et al. Progress on pathogenesis, diagnosis and treatment of hepatic encephalopathy[J]. Inter J Epidemiol Infect Dis, 2017, 44(3): 194-198. DOI: 10.3760/cam.j.issn.1673-4149.2017.03.011.
ZHANG N P. New insights into hepatic encephalopathy[J]. Chinese Hepatology, 2021, 26(3): 232-235. DOI: 10.14000/j.cnki.issn.1008-1704.2021.03.005.
CORDOBA J, VENTURA-COTS M, SIMON-TALERO M, et al. Characteristics, risk factors, and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acute-on-chronic liver failure (ACLF)[J]. J Hepatol, 2014, 60(2): 275-281. DOI: 10.1016/j.jhep.2013.10.004.
RIDOLA L, CARDINALE V, RIGGIO O. The burden of minimal hepatic encephalopathy: from diagnosis to therapeutic strategies[J]. Ann Gastroenterol, 2018, 31(2): 151-164. DOI: 10.20524/aog.2018.0232.
NI L, QI R, ZHANG L J, et al. Altered regional homogeneity in the development of minimal hepatic encephalopathy: a resting-state functional MRI study[J/OL]. PLoS One, 2012, 7(7): e42016 [2022-12-06]. DOI: 10.1371/journal.pone.0042016.
ZHANG S, HU Q, TANG T, et al. Changes in Gray Matter Density, Regional Homogeneity, and Functional Connectivity in Methamphetamine-Associated Psychosis: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study[J]. Med Sci Monit, 2018, 24: 4020-4030. DOI: 10.12659/MSM.905354.
SUN Q, FAN W, YE J, et al. Abnormal Regional Homogeneity and Functional Connectivity of Baseline Brain Activity in Hepatitis B Virus-Related Cirrhosis With and Without Minimal Hepatic Encephalopathy[J/OL]. Front Hum Neurosci, 2018, 12: 245 [2022-12-06]. DOI: 10.3389/fnhum.2018.00245.
CHEN H J, ZHU X Q, JIAO Y, et al. Abnormal baseline brain activity in low-grade hepatic encephalopathy: a resting-state fMRI study[J]. J Neurol Sci, 2012, 318(1-2): 140-145. DOI: 10.1016/j.jns.2012.02.019.
FAGHIRI A, STEPHEN J M, WANG Y P, et al. Changing brain connectivity dynamics: From early childhood to adulthood[J]. Hum Brain Mapp, 2018, 39(3): 1108-1117. DOI: 10.1002/hbm.23896.
HUTCHISON R M, WOMELSDORF T, ALLEN E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-378. DOI: 10.1016/j.neuroimage.2013.05.079.
YAN J, LI M, FU S, et al. Alterations of Dynamic Regional Homogeneity in Trigeminal Neuralgia: A Resting-State fMRI Study[J/OL]. Front Neurol, 2019, 10: 1083 [2022-12-06]. DOI: 10.3389/fneur.2019.01083.
XUE K, LIANG S, YANG B, et al. Local dynamic spontaneous brain activity changes in first-episode, treatment-naive patients with major depressive disorder and their associated gene expression profiles[J]. Psychol Med, 2020: 1-10. DOI: 10.1017/S0033291720003876.
LU F, ZHAO Y, HE Z, et al. Altered dynamic regional homogeneity in patients with conduct disorder[J/OL]. Neuropsychologia, 2021, 157: 107865 [2022-12-06]. DOI: 10.1016/j.neuropsychologia.2021.107865.
SHANG S, YE J, WU J, et al. Early disturbance of dynamic synchronization and neurovascular coupling in cognitively normal Parkinson's disease[J]. J Cereb Blood Flow Metab, 2022, 42(9): 1719-1731. DOI: 10.1177/0271678X221098503.
CABRAL J, HUGUES E, SPORNS O, et al. Role of local network oscillations in resting-state functional connectivity[J]. Neuroimage, 2011, 57(1): 130-139. DOI: 10.1016/j.neuroimage.2011.04.010.
ZUO X N, XU T, JIANG L, et al. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space[J]. Neuroimage, 2013, 65: 374-386. DOI: 10.1016/j.neuroimage.2012.10.017.
TOMASI D, VOLKOW N D. Aging and functional brain networks[J]. Mol Psychiatry, 2012, 17(5): 471, 549-558. DOI: 10.1038/mp.2011.81.
YAN C G, WANG X D, ZUO X N, et al. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging[J]. Neuroinformatics, 2016, 14(3): 339-351. DOI: 10.1007/s12021-016-9299-4.
XUE T, DONG F, HUANG R, et al. Dynamic Neuroimaging Biomarkers of Smoking in Young Smokers[J/OL]. Front Psychiatry, 2020, 11: 663 [2022-12-06]. DOI: 10.3389/fpsyt.2020.00663.
GUO J, SHI J, DONG Q, et al. Altered dynamic spontaneous neural activity in minimal hepatic encephalopathy[J/OL]. Front Neurol, 2022, 13 [2022-12-06].
LIAO Z, SUN W, LIU X, et al. Altered dynamic intrinsic brain activity of the default mode network in Alzheimer's disease: A resting-state fMRI study[J/OL]. Front Hum Neurosci, 2022, 16: 951114 [2022-12-06]. DOI: 10.3389/fnhum.2022.951114.
GAO Y L, WANG S W, TIAN S S, et al. The study of regional homogeneity and voxel-mirrored homotopic connectivity of minimal hepatic encephalopathy disease at resting-state fMRI[J]. Chin J Magn Reson Imaging, 2019, 10(12): 885-889. DOI: 10.12015/issn.1674-8034.2019.12.002.
BUCKNER R L, ANDREWS-HANNA J R, SCHACTER D L. The brain's default network: anatomy, function, and relevance to disease[J]. Ann N Y Acad Sci, 2008, 1124: 1-38. DOI: 10.1196/annals.1440.011.
LI L, LU B, YAN C G. Stability of dynamic functional architecture differs between brain networks and states[J/OL]. Neuroimage, 2020, 216: 116230 [2022-12-06]. DOI: 10.1016/j.neuroimage.2019.116230.
LIAO W, LI J, JI G J, et al. Endless Fluctuations: Temporal Dynamics of the Amplitude of Low Frequency Fluctuations[J]. IEEE Trans Med Imaging, 2019, 38(11): 2523-2532. DOI: 10.1109/TMI.2019.2904555.
TEKIN S, CUMMINGS J L. Frontal-subcortical neuronal circuits and clinical neuropsychiatry: an update[J]. J Psychosom Res, 2002, 53(2): 647-654. DOI: 10.1016/s0022-3999(02)00428-2.
LV X F, QIU Y W, TIAN J Z, et al. Abnormal regional homogeneity of resting-state brain activity in patients with HBV-related cirrhosis without overt hepatic encephalopathy[J]. Liver Int, 2013, 33(3): 375-383. DOI: 10.1111/liv.12096.
ZHANG X P, BAI Y, WANG M Y, et al. Research progress of DWI-MRI and BOLD-fMRI in visual pathway diseases[J]. Chin J Magn Reson Imaging, 2012, 12(4): 115-117, 124. DOI: 10.12015/issn.1674-8034.2021.04.029.
ZHANG G, LI Y, ZHANG X, et al. Identifying Mild Hepatic Encephalopathy Based on Multi-Layer Modular Algorithm and Machine Learning[J/OL]. Front Neurosci, 2020, 14: 627062 [2022-12-06]. DOI: 10.3389/fnins.2020.627062.
CAI L M, SHI J Y, DONG Q Y, et al. Aberrant stability of brain functional architecture in cirrhotic patients with minimal hepatic encephalopathy[J]. Brain Imaging Behav, 2022, 16(5): 2258-2267. DOI: 10.1007/s11682-022-00696-9.
VIDAURRE D, SMITH S M, WOOLRICH M W. Brain network dynamics are hierarchically organized in time[J]. Proc Natl Acad Sci U S A, 2017, 114(48): 12827-12832. DOI: 10.1073/pnas.1705120114.
MITRA A, RAICHLE M E. How networks communicate: propagation patterns in spontaneous brain activity[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1705): 20150546 [2022-12-06]. DOI: 10.1098/rstb.2015.0546.
RAICHLE M E. The restless brain: how intrinsic activity organizes brain function[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2015, 370(1668): 20140172 [2022-12-06]. DOI: 10.1098/rstb.2014.0172.
GUEVARA M, BACCARO M E, GOMEZ-ANSON B, et al. Cerebral magnetic resonance imaging reveals marked abnormalities of brain tissue density in patients with cirrhosis without overt hepatic encephalopathy[J]. J Hepatol, 2011, 55(3): 564-573. DOI: 10.1016/j.jhep.2010.12.008.

PREV Chinese expert consensus of scanning protocol and clinical application of magnetic resonance cholangiopancreatography
NEXT Changes of functional connectivity density in different severity of nicotine addicts: A functional magnetic resonance imaging study

Tel & Fax: +8610-67113815    E-mail: