Share:
Share this content in WeChat
X
Review
The research progress in predicting the efficacy of neoadjuvant chemotherapy for breast cancer according to longitudinal images-based deep learning
HUANG Yao  WANG Xiaoxia  JIANG Fujie  ZHANG Jiuquan 

Cite this article as: HUANG Y, WANG X X, JIANG F J, et al. The research progress in predicting the efficacy of neoadjuvant chemotherapy for breast cancer according to longitudinal images-based deep learning[J]. Chin J Magn Reson Imaging, 2023, 14(3): 175-178, 183. DOI:10.12015/issn.1674-8034.2023.03.032.


[Abstract] Neoadjuvant chemotherapy (NACT) has been established as the standard of care for locally progressive breast cancer. Imaging plays a crucial role in keeping track of the treatment progress and effectiveness for breast cancer patients. Studies have demonstrated the efficacy and importance of utilizing longitudinal images for dynamic evaluation and forecasting the effectiveness of NACT in breast cancer treatment. When compared to single-timing images, longitudinal images offer significant benefits. In this paper, we analyzed the limitations of single-time imaging in predicting the efficacy of breast cancer NACT, and described the current status, problems and application prospects of ultrasound and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based longitudinal images in predicting the efficacy of breast cancer NACT. This paper proposes that future research can enhance the accuracy of NACT efficacy prediction through the use of multimodal, multiseries longitudinal images, as well as incorporating data from multiple centers and large sample sizes to improve the generalizability of the model. The goal is to offer guidance for future research in using longitudinal images to predict NACT efficacy in breast cancer.
[Keywords] breast cancer;magnetic resonance imaging;longitudinal images;neoadjuvant chemotherapy;efficacy prediction

HUANG Yao1, 2   WANG Xiaoxia2   JIANG Fujie2   ZHANG Jiuquan1, 2*  

1 School of Medicine, Chongqing University, Chongqing 400030, China

2 Department of Radiology, Chongqing University Cancer Hospital, Chongqing 400030, China

Corresponding author: Zhang JQ, E-mail: zhangjq_radiol@foxmail.com

Conflicts of interest   None.

ACKNOWLEDGMENTS 2021 SKY Imaging Research Fund of the Chinese International Medical Foundation (No. Z-2014-07-2101); Chongqing Natural Science Foundation (No. cstc2021jcyj-msxmX0387, CSTB2022NSCQ-MSX1158); Medical Research Project of Chongqing Municipal Health Commission (No. 2022WSJK027).
Received  2022-11-07
Accepted  2023-03-01
DOI: 10.12015/issn.1674-8034.2023.03.032
Cite this article as: HUANG Y, WANG X X, JIANG F J, et al. The research progress in predicting the efficacy of neoadjuvant chemotherapy for breast cancer according to longitudinal images-based deep learning[J]. Chin J Magn Reson Imaging, 2023, 14(3): 175-178, 183. DOI:10.12015/issn.1674-8034.2023.03.032.

[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660.
[2]
WANG X X, TAN Y C, LIU D H, et al. Chemotherapy-associated steatohepatitis was concomitant with epicardial adipose tissue volume increasing in breast cancer patients who received neoadjuvant chemotherapy[J]. Eur Radiol, 2022, 32(7): 4898-4908. DOI: 10.1007/s00330-022-08581-1.
[3]
ARNOLD M, MORGAN E, RUMGAY H, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040[J]. Breast, 2022, 66: 15-23. DOI: 10.1016/j.breast.2022.08.010.
[4]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[5]
DERKS M G M, VAN DE VELDE C J H. Neoadjuvant chemotherapy in breast cancer: more than just downsizing[J]. Lancet Oncol, 2018, 19(1): 2-3. DOI: 10.1016/S1470-2045(17)30914-2.
[6]
GRADISHAR W J, ANDERSON B O, ABRAHAM J, et al. Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(4): 452-478. DOI: 10.6004/jnccn.2020.0016.
[7]
DENDULURI N, SOMERFIELD M R, CHAVEZ-MACGREGOR M, et al. Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO guideline update[J]. J Clin Oncol, 2021, 39(6): 685-693. DOI: 10.1200/JCO.20.02510.
[8]
VON MINCKWITZ G, BLOHMER J U, COSTA S D, et al. Response-guided neoadjuvant chemotherapy for breast cancer[J]. J Clin Oncol, 2013, 31(29): 3623-3630. DOI: 10.1200/JCO.2012.45.0940.
[9]
YANG Y, CHEN X, FAN Z, et al. Pathological response-guided postoperative treatment strategy for positive HR/negative HER2 and positive lymphnodes breast cancer patients with non-responsive pathological results to neoadjuvant chemotherapy[J/OL]. Cancer Res, 2022, 82(4) [2022-11-13]. https://doi.org/10.1158/1538-7445.SABCS21-P2-12-06. DOI: 10.1158/1538-7445.SABCS21-P2-12-06.
[10]
GOUTSOULIAK K, VEERARAGHAVAN J, SETHUNATH V, et al. Towards personalized treatment for early stage HER2-positive breast cancer[J]. Nat Rev Clin Oncol, 2020, 17(4): 233-250. DOI: 10.1038/s41571-019-0299-9.
[11]
LIU Y G, WU M X, TAN W Y, et al. Efficacy evaluation of neoadjuvant chemotherapy in breast cancer by MRI[J/OL]. Contrast Media Mol Imaging, 2022, 2022: 4542288 [2022-11-13]. https://doi.org/10.1155/2022/4542288. DOI: 10.1155/2022/4542288.
[12]
YANG M, LIU H, DAI Q L, et al. Treatment response prediction using ultrasound-based pre-, post-early, and delta radiomics in neoadjuvant chemotherapy in breast cancer[J/OL]. Front Oncol, 2022, 12: 748008 [2022-11-13]. https://doi.org/10.3389/fonc.2022.748008. DOI: 10.3389/fonc.2022.748008.
[13]
GAO Y M, REIG B, HEACOCK L, et al. Magnetic resonance imaging in screening of breast cancer[J]. Radiol Clin North Am, 2021, 59(1): 85-98. DOI: 10.1016/j.rcl.2020.09.004.
[14]
SHAN H M, ZHOU J Y, XIE T T, et al. Feasibility of MRI features in predicting efficacy of neoadjuvant chemotherapy for breast cancer[J]. Chin J Med Imaging, 2019, 27(12): 905-909, 913. DOI: 10.3969/j.issn.1005-5185.2019.12.006.
[15]
YOSHIDA K, KAWASHIMA H, KANNON T, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI[J/OL]. Magn Reson Imaging, 2022, 92: 19-25 [2022-11-13]. https://doi.org/10.1016/j.mri.2022.05.018. DOI: 10.1016/j.mri.2022.05.018.
[16]
SHAO Z M, WU J, JIANG Z f, et al. Expert consensus on neoadjuvant treatment of breast cancer in China(2021 edition)[J]. China Oncol, 2022, 32(1): 80-89. DOI: 10.19401/j.cnki.1007-3639.2022.01.011.
[17]
ZHAO Z J, CHANG C, LI J W. Value of imaging technology in clinical diagnosis and prognosis prediction for triple negative breast cancer: a state-of-art review[J]. Chin J Ultrason, 2022, 31(2): 181-185. DOI: 10.3760/cma.j.cn131148-20210630-00451.
[18]
STEINHOF-RADWAŃSKA K, GRAŻYŃSKA A, LOREK A, et al. Contrast-enhanced spectral mammography assessment of patients treated with neoadjuvant chemotherapy for breast cancer[J]. Curr Oncol, 2021, 28(5): 3448-3462. DOI: 10.3390/curroncol28050298.
[19]
HAN X, JIN S Y, YANG H J, et al. Application of conventional ultrasonography combined with contrast-enhanced ultrasonography in the axillary lymph nodes and evaluation of the efficacy of neoadjuvant chemotherapy in breast cancer patients[J/OL]. Br J Radiol, 2021, 94(1125): 20210520 [2022-11-13]. https://www.birpublications.org/doi/10.1259/bjr.20210520. DOI: 10.1259/bjr.20210520.
[20]
YIN X X, JIN Y B, GAO M Y, et al. Artificial intelligence in breast MRI radiogenomics: towards accurate prediction of neoadjuvant chemotherapy responses[J]. Curr Med Imaging, 2021, 17(4): 452-458. DOI: 10.2174/1573405616666200825161921.
[21]
CHEN Z G, LI X, SHA L. Research progress of machine learning for predicting breast cancer response to neoadjuvant chemotherapy based on MRI[J]. Chin J Magn Reson Imaging, 2021, 12(12): 102-104. DOI: 10.12015/issn.1674-8034.2021.12.024.
[22]
WANG H, MAO X Y. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer[J]. Drug Des Devel Ther, 2020, 14: 2423-2433. DOI: 10.2147/DDDT.S253961.
[23]
LEE S H, JANG M J, KIM S M, et al. Factors affecting breast cancer detectability on digital breast tomosynthesis and two-dimensional digital mammography in patients with dense breasts[J]. Korean J Radiol, 2019, 20(1): 58-68. DOI: 10.3348/kjr.2018.0012.
[24]
ZHANG X Y, LI H, WANG C Y, et al. Evaluating the accuracy of breast cancer and molecular subtype diagnosis by ultrasound image deep learning model[J/OL]. Front Oncol, 2021, 11: 623506 [2022-11-13]. https://doi.org/10.3389/fonc.2021.623506. DOI: 10.3389/fonc.2021.623506.
[25]
REZAEIJO S M, GHORVEI M, MOFID B. Predicting breast cancer response to neoadjuvant chemotherapy using ensemble deep transfer learning based on CT images[J]. J Xray Sci Technol, 2021, 29(5): 835-850. DOI: 10.3233/XST-210910.
[26]
CHOI J H, KIM H A, KIM W, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning[J/OL]. Sci Rep, 2020, 10(1): 21149 [2022-11-13]. https://www.nature.com/articles/s41598-020-77875-5. DOI: 10.1038/s41598-020-77875-5.
[27]
CHOUDHERY S, GOMEZ-CARDONA D, FAVAZZA C P, et al. MRI radiomics for assessment of molecular subtype, pathological complete response, and residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy[J/OL]. Acad Radiol, 2022, 29: S145-S154 [2022-11-13]. https://doi.org/10.1016/j.acra.2020.10.020. DOI: 10.1016/j.acra.2020.10.020.
[28]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 57 [2022-11-13]. https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-017-0846-1. DOI: 10.1186/s13058-017-0862-1.
[29]
AGHAEI F, TAN M, HOLLINGSWORTH A B, et al. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy[J]. Med Phys, 2015, 42(11): 6520-6528. DOI: 10.1118/1.4933198.
[30]
DOGAN B E, YUAN Q, BASSETT R, et al. Comparing the performances of magnetic resonance imaging size vs pharmacokinetic parameters to predict response to neoadjuvant chemotherapy and survival in patients with breast cancer[J]. Curr Probl Diagn Radiol, 2019, 48(3): 235-240. DOI: 10.1067/j.cpradiol.2018.03.003.
[31]
TUDORICA A, OH K Y, CHUI S Y, et al. Early prediction and evaluation of breast cancer response to neoadjuvant chemotherapy using quantitative DCE-MRI[J]. Transl Oncol, 2016, 9(1): 8-17. DOI: 10.1016/j.tranon.2015.11.016.
[32]
HENDERSON S, PURDIE C, MICHIE C, et al. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer[J]. Eur Radiol, 2017, 27(11): 4602-4611. DOI: 10.1007/s00330-017-4850-8.
[33]
EUN N L, KANG D, SON E J, et al. Texture analysis with 3.0-T MRI for association of response to neoadjuvant chemotherapy in breast cancer[J]. Radiology, 2020, 294(1): 31-41. DOI: 10.1148/radiol.2019182718.
[34]
JANG H J, KIM H J, CHAE Y S, et al. Effect of neoadjuvant chemotherapy on breast tissue composition: a longitudinal mammographic study with automated volumetric measurement[J]. Eur Radiol, 2020, 30(9): 4785-4794. DOI: 10.1007/s00330-020-06830-9.
[35]
DIALANI V, CHADASHVILI T, SLANETZ P J. Role of imaging in neoadjuvant therapy for breast cancer[J]. Ann Surg Oncol, 2015, 22(5): 1416-1424. DOI: 10.1245/s10434-015-4403-9.
[36]
MARINOVICH M L, MACASKILL P, IRWIG L, et al. Agreement between MRI and pathologic breast tumor size after neoadjuvant chemotherapy, and comparison with alternative tests: individual patient data meta-analysis[J]. BMC Cancer, 2015, 15: 662. DOI: 10.1186/s12885-015-1664-4.
[37]
FOWLER A M, MANKOFF D A, JOE B N. Imaging neoadjuvant therapy response in breast cancer[J]. Radiology, 2017, 285(2): 358-375. DOI: 10.1148/radiol.2017170180.
[38]
BYRA M, DOBRUCH-SOBCZAK K, KLIMONDA Z, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using Siamese convolutional neural networks[J]. IEEE J Biomed Health Inform, 2021, 25(3): 797-805. DOI: .
[39]
LIU Y, WANG Y, WANG Y X,. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: a multicentre, retrospective cohort study[J/OL]. eClinicalMedicine, 2022, 52: 101562 [2022-11-13]. https://doi.org/10.1016/j.eclinm.2022.101562. DOI: .
[40]
JIANG M, LI C L, LUO X M, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer[J]. Eur J Cancer, 2021, 147: 95-105. DOI: .
[41]
MANI S, CHEN Y K, LI X, et al. Machine learning for predicting the response of breast cancer to neoadjuvant chemotherapy[J]. J Am Med Inform Assoc, 2013, 20(4): 688-695. DOI: .
[42]
HUSSAIN L, HUANG P, NGUYEN T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response[J/OL]. BioMed Eng OnLine, 2021, 20(1): 63 [2022-11-13]. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-021-00899-z. DOI: .
[43]
GU J H, TONG T, HE C, et al. Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study[J]. Eur Radiol, 2022, 32(3): 2099-2109. DOI: .
[44]
CHE S N, XUE M, LI J, et al. Preoperative prediction of Ki-67 expression status in breast cancer based on dynamic contrast enhanced MRI radiomics combined with clinical imaging features model[J]. Chin J Radiol, 2022, 56(9): 967-975. DOI: .
[45]
GRANZIER R Y, VAN NIJNATTEN T J A, WOODRUFF H C, et al. Exploring breast cancer response prediction to neoadjuvant systemic therapy using MRI-based radiomics: a systematic review[J/OL]. Eur J Radiol, 2019, 121: 108736 [2022-11-13]. https://doi.org/10.1016/j.ejrad.2019.108736. DOI: .
[46]
RAVICHANDRAN K, BRAMAN N, JANOWCZYK A, et al. A deep learning classifier for prediction of pathological complete response to neoadjuvant chemotherapy from baseline breast DCE-MRI[C/OL]//SPIE Medical Imaging 2018: Computer-Aided Diagnosis, Houston, 2018 [2022-11-13]. https://doi.org/10.1117/12.2294056. DOI: 10.1117/12.2294056.
[47]
DRUKKER K, EDWARDS A, PAPAIOANNOU J, et al. Deep learning predicts breast cancer recurrence in analysis of consecutive MRIs acquired during the course of neoadjuvant chemotherapy[C/OL]//SPIE Medical Imaging 2020: Computer-Aided Diagnosis, Houston, 2020 [2022-11-13]. https://doi.org/10.1117/12.2549044. DOI: 10.1117/12.2549044.
[48]
QU Y H, ZHU H T, CAO K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method[J]. Thorac Cancer, 2020, 11(3): 651-658. DOI: 10.1111/1759-7714.13309.
[49]
FAN M, CHEN H, YOU C, et al. Radiomics of tumor heterogeneity in longitudinal dynamic contrast-enhanced magnetic resonance imaging for predicting response to neoadjuvant chemotherapy in breast cancer[J/OL]. Front Mol Biosci, 2021, 8: 622219 [2022-11-13]. https://doi.org/10.3389/fmolb.2021.622219. DOI: 10.3389/fmolb.2021.622219.
[50]
CHITALIA R D, KONTOS D. Role of texture analysis in breast MRI as a cancer biomarker: a review[J]. J Magn Reson Imaging, 2019, 49(4): 927-938. DOI: 10.1002/jmri.26556.
[51]
LA FORGIA D, VESTITO A, LASCIARREA M, et al. Response predictivity to neoadjuvant therapies in breast cancer: a qualitative analysis of background parenchymal enhancement in DCE-MRI[J/OL]. J Pers Med, 2021, 11(4): 256 [2022-11-13]. https://doi.org/10.3390/jpm11040256. DOI: 10.3390/jpm11040256.
[52]
KEUNE J D, JEFFE D B, SCHOOTMAN M, et al. Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer[J]. Am J Surg, 2010, 199(4): 477-484. DOI: 10.1016/j.amjsurg.2009.03.012.
[53]
CHEN P X, WANG C, LU R L, et al. Multivariable models based on baseline imaging features and clinicopathological characteristics to predict breast pathologic response after neoadjuvant chemotherapy in patients with breast cancer[J]. Breast Care, 2022, 17(3): 306-315. DOI: 10.1159/000521638.
[54]
LEE J G, JUN S, CHO Y W, et al. Deep learning in medical imaging: general overview[J]. Korean J Radiol, 2017, 18(4): 570-584. DOI: 10.3348/kjr.2017.18.4.570.
[55]
ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. DOI: 10.1038/nature21056.

PREV Research progress of nasopharyngeal carcinoma using deep learning based on MRI
NEXT The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn