Share:
Share this content in WeChat
X
Review
Application progress of MRI in demonstrating the facial nerve in the parotid gland
WANG Yihua  WANG Lijun 

Cite this article as: WANG Y H, WANG L J. Application progress of MRI in demonstrating the facial nerve in the parotid gland[J]. Chin J Magn Reson Imaging, 2023, 14(3): 165-169. DOI:10.12015/issn.1674-8034.2023.03.030.


[Abstract] The facial nerve in the parotid gland has a complex course and is difficult to distinguish from the surrounding anatomical structures. With the application of magnetic resonance neurography (MRN) sequences, anatomical MRN and functional MRN techniques were used to demonstrate the facial nerve in the parotid gland, which improved the demonstration rate, and helped for identifying the neural lesions and evaluating the relationship between facial nerve and peripheral lesions. This article reviews the MRN imaging technique of facial nerve in parotid gland and its clinical application in recent years, aiming to provide multi-angle information for the improvement of MRN in parotid segmental facial nerve.
[Keywords] parotid gland;facial nerve;magnetic resonance imaging;magnetic resonance neurography;diffusion tensor tractography

WANG Yihua   WANG Lijun*  

Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Corresponding author: Wang LJ, E-mail: wanglj345@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Medical Education Research Project of Liaoning Province (No. 2022-N005-05).
Received  2022-11-29
Accepted  2023-03-03
DOI: 10.12015/issn.1674-8034.2023.03.030
Cite this article as: WANG Y H, WANG L J. Application progress of MRI in demonstrating the facial nerve in the parotid gland[J]. Chin J Magn Reson Imaging, 2023, 14(3): 165-169. DOI:10.12015/issn.1674-8034.2023.03.030.

[1]
TOUSKA P, CONNOR S. New and Advanced Magnetic Resonance Imaging Diagnostic Imaging Techniques in the Evaluation of Cranial Nerves and the Skull Base[J]. Neuroimaging Clin N Am, 2021, 31(4): 665-684. DOI: 10.1016/j.nic.2021.06.006.
[2]
VERMA R, REDDY G, KUMAR B P, et al. Outcome of Postoperative Facial Nerve Function Following Electromyographic Facial Nerve Monitoring During Parotidectomy for Benign Lesions: a Retrospective Study[J]. Indian J Surg Oncol, 2022, 13(3): 495-499. DOI: 10.1007/s13193-022-01500-2.
[3]
KU V, COX C, MIKESKA A, et al. Magnetic Resonance Neurography for Evaluation of Peripheral Nerves[J/OL]. J Brachial Plex Peripher Nerve Inj, 2021, 16(1): e17-e23 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/34007307/. DOI: 10.1055/s-0041-1729176.
[4]
KHALILZADEH O, FAYAD L M, AHLAWAT S. 3D MR Neurography[J]. Semin Musculoskelet Radiol, 2021, 25(3): 409-417. DOI: 10.1055/s-0041-1730909.
[5]
KANEKAR S, SAIF M, KANEKAR S. Imaging of Cranial Neuralgias[J]. Neurol Clin, 2022, 40(3): 591-607. DOI: 10.1016/j.ncl.2022.02.008.
[6]
TANENBAUM R E, LOBO R, KAHANA A, et al. Advances in magnetic resonance imaging of orbital disease[J]. Can J Ophthalmol, 2022, 57(4): 217-227. DOI: 10.1016/j.jcjo.2021.04.025.
[7]
CAVALLARO M, COGLITORE A, TESSITORE A, et al. Three-Dimensional Constructive Interference in Steady State (3D CISS) Imaging and Clinical Applications in Brain Pathology[J/OL]. Biomedicines, 2022, 10(11): 2997 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/36428564/. DOI: 10.3390/biomedicines10112997.
[8]
GUENETTE J P, BEN-SHLOMO N, JAYENDER J, et al. MR Imaging of the Extracranial Facial Nerve with the CISS Sequence[J]. AJNR Am J Neuroradiol, 2019, 40(11): 1954-1959. DOI: 10.3174/ajnr.A6261.
[9]
KWON D, LEE C, CHAE Y, et al. Clinical validation of the 3-dimensional double-echo steady-state with water excitation sequence of MR neurography for preoperative facial and lingual nerve identification[J]. Imaging Sci Dent, 2022, 52(3): 259-266. DOI: 10.5624/isd.20220035.
[10]
KIM Y, JEONG H S, KIM H J, et al. Three-dimensional double-echo steady-state with water excitation magnetic resonance imaging to localize the intraparotid facial nerve in patients with deep-seated parotid tumors[J]. Neuroradiology, 2021, 63(5): 731-739. DOI: 10.1007/s00234-021-02673-3.
[11]
DOS S S J, DE BARROS L, DE FREITAS S R, et al. "Million dollar nerve" magnetic resonance neurography: first normal and pathological findings[J]. Eur Radiol, 2022, 32(2): 1154-1162. DOI: 10.1007/s00330-021-08213-0.
[12]
ZHANG Z, MENG Q, CHEN Y, et al. 3-T imaging of the cranial nerves using three-dimensional reversed FISP with diffusion-weighted MR sequence[J]. J Magn Reson Imaging, 2008, 27(3): 454-458. DOI: 10.1002/jmri.21009.
[13]
HONG G X, ZHOU Z, RAO L J, et al. 3D-PSIF-DWI in Parotid Gland Tumors Preoperative Evaluation: A Preliminary Study[J]. J Clin Radiol, 2013, 32(6): 785-787. DOI: 10.13437/j.cnki.jcr.2013.06.030.
[14]
KIM D J, LEE H J, BAIK J, et al. Improved Blood Suppression of Motion-Sensitized Driven Equilibrium in High-Resolution Whole-Brain Vessel Wall Imaging: Comparison of Contrast-Enhanced 3D T1-Weighted FSE with Motion-Sensitized Driven Equilibrium and Delay Alternating with Nutation for Tailored Excitation[J]. AJNR Am J Neuroradiol, 2022, 43(12): 1713-1718. DOI: 10.3174/ajnr.A7678.
[15]
JUN C, SHUHUA L, XUE Z, et al. Application of motion-sensitized driven equilibrium based black blood 3D TSE sequence in the detection of brain metastases[J/OL]. Magn Reson Imaging, 2022, 93: 145-148 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35981693/. DOI: 10.1016/j.mri.2022.08.010.
[16]
TOMOYOSE R, MIYATA T, SHIRAISHI W, et al. Gadolinium-enhanced MR improved motion sensitized driven equilibrium (iMSDE) for intracranial vessel imaging in giant cell arteritis[J/OL]. J Stroke Cerebrovasc Dis, 2022, 31(10): 106697 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35939958/. DOI: 10.1016/j.jstrokecerebrovasdis.2022.106697.
[17]
JIANG Y W , SUN C, SUN J, et al. The value of 3D-iMSDE MR neurography in the determination of the anatomical relationship between intraparotid facial nerve and parotid ducts and parotid tumors[J]. Chin J Radiol, 2019(9): 755-760. DOI: 10.3760/cma.j.issn.1005-1201.2019.09.008.
[18]
ZHANG Y, FURST A J. Brainstem Diffusion Tensor Tractography and Clinical Applications in Pain[J/OL]. Front Pain Res (Lausanne), 2022, 3: 840328 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35399154/. DOI: 10.3389/fpain.2022.840328.
[19]
NANDA G, JAIN P, SUMAN A, et al. Role of diffusion tensor imaging and tractography in spinal cord injury[J/OL]. J Clin Orthop Trauma, 2022, 33: 101997 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/36118562/. DOI: 10.1016/j.jcot.2022.101997.
[20]
ZHANG Y, GE H, XU M, et al. Significance of Preoperative Nerve Reconstruction Using Diffusion Tensor Imaging Tractography for Facial Nerve Protection in Vestibular Schwannoma[J/OL]. J Korean Neurosurg Soc, 2022, 10: 3340 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/36239080/. DOI: 10.3340/jkns.2022.0134.
[21]
VARA G, TUZZATO G, BIANCHI G, et al. Clinical Application of Diffusion Tensor Imaging for a Brachial Plexus Injury[J/OL]. Diagnostics (Basel), 2022, 12(7): 1687 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35885591/. DOI: 10.3390/diagnostics12071687.
[22]
ORTUG A, YUZBASIOGLU N, AKALAN N, et al. Preoperative and postoperative high angular resolution diffusion imaging tractography of cerebellar pathways in posterior fossa tumors[J]. Clin Anat, 2022, 35(8): 1085-1099. DOI: 10.1002/ca.23914.
[23]
CONSAGRA W, VENKATARAMAN A, ZHANG Z. Optimized Diffusion Imaging for Brain Structural Connectome Analysis[J]. IEEE Trans Med Imaging, 2022, 41(8): 2118-2129. DOI: 10.1109/TMI.2022.3156868.
[24]
EL K W, RODDY D, DAVY S, et al. Magnetic resonance diffusion weighted imaging using constrained spherical deconvolution-based tractography of the extracranial course of the facial nerve[J/OL]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 130(2): e44-e56 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/32033932/. DOI: 10.1016/j.oooo.2019.12.012.
[25]
VAISH A, RAJWADE A, GUPTA A. TL-HARDI: Transform learning based accelerated reconstruction of HARDI data[J/OL]. Comput Biol Med, 2022, 143: 105212 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35151154/. DOI: 10.1016/j.compbiomed.2022.105212.
[26]
FENG T, ZHAO S J, NIE B B, et al. Research progress of fiber bundle tracking algorithm in diffusion magnetic resonance imaging[J]. Chin J Med Imaging, 2019, 27(5): 393-396. DOI: 10.3969/j.issn.1005-5185.2019.05.018.
[27]
SEIDER N A, ADEYEMO B, MILLER R, et al. Accuracy and reliability of diffusion imaging models[J/OL]. Neuroimage, 2022, 254: 119138 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35339687/. DOI: 10.1016/j.neuroimage.2022.119138.
[28]
ATTYÉ A, KARKAS A, TROPRÈS I, et al. Parotid gland tumours: MR tractography to assess contact with the facial nerve[J]. Eur Radiol, 2016, 26(7): 2233-2241. DOI: 10.1007/s00330-015-4049-9.
[29]
Martín N T, Barousse R. Update in the evaluation of peripheral nerves by MRI, from morphological to functional neurography[J]. Radiologia (Engl Ed), 2020, 62(2): 90-101. DOI: 10.1016/j.rx.2019.06.005.
[30]
BALSIGER F, WAGNER B, JENDE J, et al. Methodologies and MR Parameters in Quantitative Magnetic Resonance Neurography: A Scoping Review Protocol[J/OL]. Methods Protoc, 2022, 5(3): 39 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35645347/. DOI: 10.3390/mps5030039.
[31]
KINGER N P, CHIEN L C, SHARMA P S, et al. Comparison of 3D constructive interference in steady state (CISS) and T2 sampling perfection with application optimized contrasts using different flip angle evolution MR imaging of the intracranial trigeminal nerve and central skull base neuroforamina[J]. Neuroradiol J, 2022, 35(6): 678-683. DOI: 10.1177/19714009221084248.
[32]
JACK M M, SMITH B W, CAPEK S, et al. The spectrum of brachial plexopathy from perineural spread of breast cancer[J/OL]. J Neurosurg, 2022: 1-10 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/34438281/. DOI: 10.3171/2021.12.JNS211882.
[33]
LEE P P, GUESS G C, SCHUMACHER A E, et al. Delayed diagnosis of palatal adenoid cystic carcinoma: Review of diagnostic workup and image features of perineural spread[J/OL]. Oral Oncol, 2021, 121: 105501 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35213832/. DOI: 10.1016/j.oraloncology.2021.105501.
[34]
KAZEMIAN E, SOLINSKI M, ADAMS W, et al. The role of perineural invasion in parotid malignancy outcomes: A systematic review and meta-analysis[J/OL]. Oral Oncol, 2022, 130: 105937 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35662029/. DOI: 10.1016/j.oraloncology.2022.105937.
[35]
CHO W K, LEE M K, CHOI Y J, et al. Preoperative Magnetic Resonance Image and Computerized Tomography Findings Predictive of Facial Nerve Invasion in Patients with Parotid Cancer without Preoperative Facial Weakness-A Retrospective Observational Study[J/OL]. Cancers (Basel), 2022, 14(4): 1086 [2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/35205832/. DOI: 10.3390/cancers14041086.
[36]
ROUCHY R C, ATTYÉ A, MEDICI M, et al. Facial nerve tractography: A new tool for the detection of perineural spread in parotid cancers[J]. Eur Radiol, 2018, 28(9): 3861-3871. DOI: 10.1007/s00330-018-5318-1.
[37]
SIMONE M, VESPERINI E, VITI C, et al. Intraparotid facial nerve schwannoma: two case reports and a review of the literature[J]. Acta Otorhinolaryngol Ital, 2018, 38(1): 73-77. DOI: 10.14639/0392-100X-1170.
[38]
GODEL T, BÄUMER P, FARSCHTSCHI S, et al. Long-term Follow-up and Histological Correlation of Peripheral Nervous System Alterations in Neurofibromatosis Type 2[J]. Clin Neuroradiol, 2022, 32(1): 277-285. DOI: 10.1007/s00062-021-01102-5.

PREV Research advances of radiomics in prognosis prediction of lower-grade gliomas
NEXT Research progress of nasopharyngeal carcinoma using deep learning based on MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn