Share this content in WeChat
Research advances of radiomics in prognosis prediction of lower-grade gliomas
CHEN Ruihong  TAN Yan 

Cite this article as: CHEN R H, TAN Y. Research advances of radiomics in prognosis prediction of lower-grade gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(3): 159-164. DOI:10.12015/issn.1674-8034.2023.03.029.

[Abstract] Glioma is the most common primary malignant tumor of brain parenchyma. Gliomas are divided into grades 1-4, of which grades 2 and 3 are called lower-grade gliomas (LGGs). The 2021 World Health Organization Central Nervous System (WHO CNS) deepens the importance of molecular typing for the diagnosis and treatment of LGGs, using LGGs molecular typing for pathological grading upgrade diagnosis. As an emerging field, radiomics can noninvasively predict the molecular subtypes of LGGs before surgery, providing a basis for treatment evaluation and prognosis prediction of LGGs. At present, many studies have established radiomics models by analyzing MRI routine sequences, functional sequences, combined with clinical information, using machine learning and deep learning to predict LGGs molecular typing noninvasively before surgery. Although it has limitations, it still has certain scientific research and clinical significance. This article reviews the research progress of LGGs molecular typing in MRI radiomics, in order to predict LGGs molecular typing by MRI radiomics, and to facilitate the formulation of clinical individualized diagnosis and treatment plans and prognosis prediction.
[Keywords] lower-grade gliomas;glioma;magnetic resonance imaging;radiomics;molecular typing

CHEN Ruihong1   TAN Yan2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: Tan Y, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 82071893).
Received  2022-09-17
Accepted  2023-03-03
DOI: 10.12015/issn.1674-8034.2023.03.029
Cite this article as: CHEN R H, TAN Y. Research advances of radiomics in prognosis prediction of lower-grade gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(3): 159-164. DOI:10.12015/issn.1674-8034.2023.03.029.

LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
TOM M C, CAHILL D P, BUCKNER J C, et al. Management for Different Glioma Subtypes: Are All Low-Grade Gliomas Created Equal?[J]. Am Soc Clin Oncol Educ Book, 2019, 39: 133-145. DOI: 10.1200/EDBK_238353.
BRAT D J, VERHAAK R G, ALDAPE K D, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas[J]. N Engl J Med, 2015, 372(26): 2481-2498. DOI: 10.1056/NEJMoa1402121.
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
BUCHLAK Q D, ESMAILI N, LEVEQUE J C, et al. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review[J]. J Clin Neurosci, 2021, 89: 177-198. DOI: 10.1016/j.jocn.2021.04.043.
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: Images Are More than Pictures, They Are Data[J/OL]. Radiology, 2016, 278(2): 563-577 [2022-07-09]. DOI: 10.1148/radiol.2015151169.
PATEL S H, BANSAL A G, YOUNG E B, et al. Extent of Surgical Resection in Lower-Grade Gliomas: Differential Impact Based on Molecular Subtype[J]. AJNR Am J Neuroradiol, 2019, 40(7): 1149-1155. DOI: 10.3174/ajnr.A6102.
DONO A, BALLESTER L Y, PRIMDAHL D, et al. IDH-Mutant Low-grade Glioma: Advances in Molecular Diagnosis, Management, and Future Directions[J/OL]. Curr Oncol Rep, 2021, 23(2): 20 [2022-07-09]. DOI: 10.1007/s11912-020-01006-6.
HAN S, LIU Y, CAI S J, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets[J]. Br J Cancer, 2020, 122(11): 1580-1589. DOI: 10.1038/s41416-020-0814-x.
ARITA H, KINOSHITA M, KAWAGUCHI A, et al. Lesion location implemented magnetic resonance imaging radiomics for predicting IDH and TERT promoter mutations in grade Ⅱ/Ⅲ gliomas[J/OL]. Sci Rep, 2018, 8(1): 11773 [2022-07-09]. DOI: 10.1038/s41598-018-30273-4.
ZHANG X, TIAN Q, WANG L, et al. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI[J]. J Magn Reson Imaging, 2018, 48(4): 916-926. DOI: 10.1002/jmri.25960.
PARK C J, CIHOL Y S, PARK Y W, et al. Diffusion tensor imaging radiomics in lower-grade glioma: improving subtyping of isocitrate dehydrogenase mutation status[J]. Neuroradiology, 2020, 62(3): 319-326. DOI: 10.1007/s00234-019-02312-y.
REN Y, ZHANG X, RUI W, et al. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features[J]. J Magn Reson Imaging, 2019, 49(3): 808-817. DOI: 10.1002/jmri.26240.
KIM M, JUNG S Y, PARK J E, et al. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma[J]. Eur Radiol, 2020, 30(4): 2142-2151. DOI: 10.1007/s00330-019-06548-3.
CAO M, SUO S, ZHANG X, et al. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach[J/OL]. Biomed Res Int, 2021, 2021: 1235314 [2022-07-09]. DOI: 10.1155/2021/1235314.
SUN C, FAN L, WANG W, et al. Radiomics and Qualitative Features From Multiparametric MRI Predict Molecular Subtypes in Patients With Lower-Grade Glioma[J/OL]. Front Oncol, 2021, 11: 756828 [2022-07-09]. DOI: 10.3389/fonc.2021.756828.
JAIN R, JOHNSON D R, PATEL S H, et al. "Real world" use of a highly reliable imaging sign: "T2-FLAIR mismatch" for identification of IDH mutant astrocytomas[J]. Neuro Oncol, 2020, 22(7): 936-943. DOI: 10.1093/neuonc/noaa041.
ZHOU H, CHANG K, BAI H X, et al. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas[J]. J Neuro-Oncol, 2019, 142(2): 299-307. DOI: 10.1007/s11060-019-03096-0.
NALAWADW S S, YU F F, BANGALORE Y C G, et al. Brain tumor IDH, 1p/19q, and MGMT molecular classification using MRI-based deep learning: an initial study on the effect of motion and motion correction[J/OL]. J Med Imaging (Bellingham), 2022, 9(1): 016001 [2022-09-09]. DOI: 10.1117/1.Jmi.9.1.016001.
LU L, ZHANG Y, ZHAO Y, et al. Effects of 1p/19q Codeletion on Immune Phenotype in Low Grade Glioma[J/OL]. Front Cell Neurosci, 2021, 15: 704344 [2022-07-09]. DOI: 10.3389/fncel.2021.704344.
National Health Commission Medical Administration Bureau, Glioma Professional Committee of Chinese Anti-Cancer Association, Glioma Professional Committee of Chinese Medical Doctor Association. Guidelines for diagnosis and treatment of glioma (2022 edition)[J]. Chin J Neurosurg, 2022, 38(8): 757-777. DOI: 10.3760/cma.j.cn112050-20220510-00239.
KONG Z, JIANG C, ZHANG Y, et al. Thin-Slice Magnetic Resonance Imaging-Based Radiomics Signature Predicts Chromosomal 1p/19q Co-deletion Status in Grade Ⅱ and Ⅲ Gliomas[J/OL]. Front Neurol, 2020, 11: 551771 [2022-07-09]. DOI: 10.3389/fneur.2020.551771.
CASALE R, LAVROVA E, SANDULEEANU S, et al. Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients[J/OL]. Eur J Radiol, 2021, 139: 109678 [2022-07-09]. DOI: 10.1016/j.ejrad.2021.109678.
KHA Q H, LE V H, HUNG T N K, et al. Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas[J/OL]. Cancers, 2021, 13(21): 5398 [2022-07-09]. DOI: 10.3390/cancers13215398.
KOCAK B, DURMAZ E S, ATES E, et al. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status[J]. Eur Radiol, 2020, 30(2): 877-886. DOI: 10.1007/s00330-019-06492-2.
ALI M B, GU I Y, BERGER M S, et al. Domain Mapping and Deep Learning from Multiple MRI Clinical Datasets for Prediction of Molecular Subtypes in Low Grade Gliomas[J/OL]. Brain Sci, 2020, 10(7): 463 [2022-09-09]. DOI: 10.3390/brainsci10070463.
YAN J, ZHANG S, SUN Q, et al. Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study[J]. Lab Invest, 2022, 102(2): 154-159. DOI: 10.1038/s41374-021-00692-5.
AKKUS Z, ALI I, SEDLAR J, et al. Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence[J]. J Digit Imaging, 2017, 30(4): 469-476. DOI: 10.1007/s10278-017-9984-3.
LEWIS M A, GANESHAN B, BARNES A, et al. Filtration-histogram based magnetic resonance texture analysis (MRTA) for glioma IDH and 1p/19q genotyping[J]. Eur J Radiol, 2019, 113: 116-123. DOI: 10.1016/j.ejrad.2019.02.014.
LI Y, AMMARI S, LAWRANCE L, et al. Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion[J/OL]. Cancers, 2022, 14(7): 1778 [2022-09-09]. DOI: 10.3390/cancers14071778.
China Glioma Collaborative Group, Chinese Glioma Genome Atlas Project Chinese Glioma Molecular Diagnosis and Treatment Guidelines[J]. Chin J Neurosurg, 2014, 30(5): 435-444. DOI: 10.3760/cma.j.issn.1001-2346.2014.05.002.
ZHANG N, MA H H, WANG F, et al. Correlations of MGMT promoter methylation and IDH1 mutations with the clinical prognosis of malignant glioma patients[J]. Basic Clin Med, 2021, 41(10): 1476-1480. DOI: 10.3969/j.issn.1001-6325.2021.10.010.
YOGANANDA C G B, SHAN B R, NALAWADE S S, et al. MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status[J]. Am J Neuroradiol, 2021, 42(5): 845-852. DOI: 10.3174/ajnr.A7029.
SHBOUL Z A, CHEN J, KHAN M I. Prediction of Molecular Mutations in Diffuse Low-Grade Gliomas using MR Imaging Features[J/OL]. Sci Rep, 2020, 10(1): 3711 [2022-09-09]. DOI: 10.1038/s41598-020-60550-0.
HUANG W Y, WEN L H, WU G, et al. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis[J]. Cancer Sci, 2021, 112(7): 2835-2844. DOI: 10.1111/cas.14918.
SHA Y J, WANG X C, TAN Y, et al. The value of predicting the subtype of IDH mutation combining with MGMT promoter methylation in lower grade gliomas by radiomics based on preoperative MRI[J]. Chin J Magn Reson Imaging, 2022, 13(7): 6-11. DOI: 10.12015/issn.1674-8034.2202.07.002.
JIANG C, KONG Z, LIU S, et al. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas[J/OL]. Eur J Radiol, 2019, 121: 108714 [2022-07-09]. DOI: 10.1016/j.ejrad.2019.108714.
WEI J, YANG G, HAO X, et al. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication[J]. Eur Radiol, 2019, 29(2): 877-888. DOI: 10.1007/s00330-018-5575-z.
TERZI N K, YILMAZ I, OZ A B. The Place and Prognostic Value of TERT Promoter Mutation in Molecular Classification in Grade Ⅱ-Ⅱ Glial Tumors and Primary Glioblastomas[J]. Turk Patoloji Derg, 2022, 38(2): 90-98. DOI: 10.5146/tjpath.2021.01555.
ŚLEDZIŃSKA P, BEBYN M G, FURTAK J, et al. Prognostic and Predictive Biomarkers in Gliomas[J/OL]. Int J Mol Sci, 2021, 22(19): 10373 [2022-07-09]. DOI: 10.3390/ijms221910373.
ARITA H, ICHIMURA K. Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas[J]. Brain Tumor Pathol, 2022, 39(3): 121-129. DOI: 10.1007/s10014-021-00424-z.
FANG S, FAN Z, SUN Z, et al. Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade Ⅱ Gliomas via a Machine-Learning Approach[J/OL]. Front Oncol, 2020, 10: 606741 [2022-07-09]. DOI: 10.3389/fonc.2020.606741.
JIANG C, KONG Z, ZHANG Y, et al. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade Ⅱ and Ⅲ gliomas[J]. Neuroradiology, 2020, 62(7): 803-813. DOI: 10.1007/s00234-020-02392-1.
FUKUMA R, YANAGISAWA T, KINOSHITA M, et al. Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network[J/OL]. Sci Rep, 2019, 9(1): 201311 [2022-07-09]. DOI: 10.1038/s41598-019-56767-3.
LU J, LI X, LI H. A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas[J/OL]. Clin Radiol, 2022, 77(8): e560-e567 [2022-09-09]. DOI: 10.1016/j.crad.2022.04.005.
GILLET E, ALENTORN A, DOUKOURE B, et al. TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas[J]. Neuro Oncol, 2014, 118(1): 131-139. DOI: 10.1007/s11060-014-1407-4.
NOOR H, BRIGGS N E, MCDONALD K L, et al. TP53 Mutation Is a Prognostic Factor in Lower Grade Glioma and May Influence Chemotherapy Efficacy[J/OL]. Cancers, 2021, 13(21): 5362 [2022-07-09]. DOI: 10.3390/cancers13215362.
IKEMURA M, SHIBAHRAR J, MUKASA A, et al. Utility of ATRX immunohistochemistry in diagnosis of adult diffuse gliomas[J]. Histopathology, 2016, 69(2): 260-267. DOI: 10.1111/his.12927.
NADNAKUMAP P, MANSOURI A, DAS S. The Role of ATRX in Glioma Biology[J/OL]. Front Oncol, 2017, 7: 236 [2022-07-09]. DOI: 10.3389/fonc.2017.00236.
XIE Y, TAN Y, YANG C, et al. Omics-based integrated analysis identified ATRX as a biomarker associated with glioma diagnosis and prognosis[J]. Cancer Biol Med, 2019, 16(4): 784-796. DOI: 10.20892/j.issn.2095-3941.2019.0143.
LI Y, LIU X, QIAN Z, et al. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature[J]. Eur Radiol, 2018, 28(7): 2960-2968. DOI: 10.1007/s00330-017-5267-0.
WU S, ZHANG X, RUI W, et al. A nomogram strategy for identifying the subclassification of IDH mutation and ATRX expression loss in lower-grade gliomas[J]. Eur Radiol, 2022, 32(5): 3187-3198. DOI: 10.1007/s00330-021-08444-1.
HUANG L E. Impact of CDKN2A/B Homozygous Deletion on the Prognosis and Biology of IDH-Mutant Glioma[J/OL]. Biomedicines, 2022, 10(2): 246 [2022-09-09]. DOI: 10.3390/biomedicines10020246.
LAM L H T, DO D T, DIEP D T N, et al. Molecular subtypes classification of low-grade gliomas patients using MRI-based radiomics and machine learning[J/OL]. NMR Biomed, 2022, 35(11): e4792 [2022-09-09]. DOI: 10.1002/nbm.4792.

PREV Progress of resting-state functional MRI in patients with poststroke aphasia
NEXT Application progress of MRI in demonstrating the facial nerve in the parotid gland

Tel & Fax: +8610-67113815    E-mail: