Share this content in WeChat
Progress of resting-state functional MRI in patients with poststroke aphasia
HAN Yang  ZHANG Hui 

Cite this article as: HAN Y, ZHANG H. Progress of resting-state functional MRI in patients with poststroke aphasia[J]. Chin J Magn Reson Imaging, 2023, 14(3): 153-158. DOI:10.12015/issn.1674-8034.2023.03.028.

[Abstract] Aphasia is one of the common complications of stroke patients, which seriously affects the patient's daily life and also brings a heavy burden to the family, society and economy. At present, the pathogenesis of poststroke aphasia remains elusive. The rest-state functional MRI (rs-fMRI) can not only reflect the patient's brain function, brain tissue metabolism, and the level of brain local blood flow, but does not require the patient to perform specific language tasks, it is simple and easy, and the patient's compliance is good. So it is an important tool to explore the pathogenesis of poststroke aphasia. With the continuous development and innovation of imaging technology, rs-fMRI will play a more important role in the individualized diagnosis, evaluation and rehabilitation of patients with post-stroke aphasia. This article reviewed the research progress of rs-fMRI in poststroke aphasia, aiming to provide new ideas for the elucidating of the pathogenesis of aphasia after stroke and the formulation of language function recovery programs for patients.
[Keywords] poststroke aphasia;aphasia;rest-state functional magnetic resonance imaging;magnetic resonance imaging

HAN Yang1   ZHANG Hui2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan 030001, China

Corresponding author: Zhang H, E-mail:

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. U21A20386, 81971593).
Received  2022-10-28
Accepted  2023-03-03
DOI: 10.12015/issn.1674-8034.2023.03.028
Cite this article as: HAN Y, ZHANG H. Progress of resting-state functional MRI in patients with poststroke aphasia[J]. Chin J Magn Reson Imaging, 2023, 14(3): 153-158. DOI:10.12015/issn.1674-8034.2023.03.028.

STEFANIAK J D, HALAI A D, LAMBON RALPH M A. The neural and neurocomputational bases of recovery from post-stroke aphasia[J]. Nat Rev Neurol, 2020, 16(1): 43-55. DOI: 10.1038/s41582-019-0282-1.
FRIDRIKSSON J, HILLIS A E. Current Approaches to the Treatment of Post-Stroke Aphasia[J]. J Stroke, 2021, 23(2): 183-201. DOI: 10.5853/jos.2020.05015.
ELLIS C, URBAN S. Age and aphasia: a review of presence, type, recovery and clinical outcomes[J]. Top Stroke Rehabil, 2016, 23(6): 430-439. DOI: 10.1080/10749357.2016.1150412.
WANG Y, LI H, WEI H, et al. Assessment of the quality and content of clinical practice guidelines for post-stroke rehabilitation of aphasia[J/OL]. Medicine, 2019, 98(31): e16629 [2022-11-01]. DOI: 10.1097/md.0000000000016629.
CROSSON B, RODRIGUEZ A D, COPLAND D, et al. Neuroplasticity and aphasia treatments: new approaches for an old problem[J]. J Neurol Neurosur Ps, 2019, 90(10): 1147-1155. DOI: 10.1136/jnnp-2018-319649.
STOCKERT A, SAUR D. Aphasia: a neuronal network disorder[J]. Der Nervenarzt, 2017, 88(8): 866-873. DOI: 10.1007/s00115-017-0356-5.
GERSTENECKER A, LAZAR R M. Language recovery following stroke[J]. Clin Neuropsychol, 2019, 33(5): 928-947. DOI: 10.1080/13854046.2018.1562093.
BIOU E, CASSOUDESALLE H, COGNÉ M, et al. Transcranial direct current stimulation in post-stroke aphasia rehabilitation: A systematic review[J]. Ann Phys Rehabil Med, 2019, 62(2): 104-121. DOI: 10.1016/
ROTH R, WILMSKOETTER J, BONILHA L. The role of disrupted structural connectivity in aphasia[J]. Handb Clin Neurol, 2022, 185: 121-127. DOI: 10.1016/b978-0-12-823384-9.00006-2.
INATOMI Y, NAKAJIMA M, YONEHARA T. Aphasia Induced by Infratentorial Ischemic Stroke: Two Case Reports[J]. Cogn Behav Neurol, 2021, 34(2): 129-139. DOI: 10.1097/wnn.0000000000000266.
TANG J, XIANG X, CHENG X. The Progress of Functional Magnetic Resonance Imaging in Patients with Poststroke Aphasia[J/OL]. J Healthc Eng, 2022, 2022: 3270534 [2022-11-01]. DOI: 10.1155/2022/3270534.
LANDRIGAN J F, ZHANG F, MIRMAN D. A data-driven approach to post-stroke aphasia classification and lesion-based prediction[J]. Brain, 2021, 144(5): 1372-1383. DOI: 10.1093/brain/awab010.
FRIDRIKSSON J, DEN OUDEN D B, HILLIS A E, et al. Anatomy of aphasia revisited[J]. Brain, 2018, 141(3): 848-862. DOI: 10.1093/brain/awx363.
SREEDHARAN S, ARUN K M, SYLAJA P N, et al. Functional Connectivity of Language Regions of Stroke Patients with Expressive Aphasia During Real-Time Functional Magnetic Resonance Imaging Based Neurofeedback[J]. Brain Connect, 2019, 9(8): 613-626. DOI: 10.1089/brain.2019.0674.
WANG Y, DU W, YANG X, et al. Diagnosis and differential diagnosis flow diagram of Chinese post-stroke aphasia types and treatment of post-stroke aphasia[J]. Aging Med (Milton), 2021, 4(4): 325-336. DOI: 10.1002/agm2.12183.
GERANMAYEH F, BROWNSETT S L, WISE R J. Task-induced brain activity in aphasic stroke patients: what is driving recovery?[J]. Brain, 2014, 137(Pt 10): 2632-2648. DOI: 10.1093/brain/awu163.
WORTMAN-JUTT S, EDWARDS D. Poststroke Aphasia Rehabilitation: Why All Talk and No Action?[J]. Neurorehabil Neural Repair, 2019, 33(4): 235-244. DOI: 10.1177/1545968319834901.
FINN E S, SCHEINOST D, FINN D M, et al. Can brain state be manipulated to emphasize individual differences in functional connectivity?[J]. Neuroimage, 2017, 160: 140-151. DOI: 10.1016/j.neuroimage.2017.03.064.
KIM E, YU J W, KIM B, et al. Refined prefrontal working memory network as a neuromarker for Alzheimer's disease[J]. Biomed Opt Express, 2021, 12(11): 7199-7222. DOI: 10.1364/boe.438926.
SMITHA K A, AKHIL RAJA K, ARUN K M, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
VAKAMUDI K, TRAPP C, TALAAT K, et al. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals[J]. Brain Connect, 2020, 10(8): 448-463. DOI: 10.1089/brain.2020.0758.
CHEN Y, QI D, QIN T, et al. Brain Network Connectivity Mediates Education-related Cognitive Performance in Healthy Elderly Adults[J]. Curr Alzheimer Res, 2019, 16(1): 19-28. DOI: 10.2174/1567205015666181022094158.
OSCHMANN M, GAWRYLUK J R. A Longitudinal Study of Changes in Resting-State Functional Magnetic Resonance Imaging Functional Connectivity Networks During Healthy Aging[J]. Brain Connect, 2020, 10(7): 377-384. DOI: 10.1089/brain.2019.0724.
SCHAEFER A, KONG R, GORDON E M, et al. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI[J]. Cereb Cortex, 2018, 28(9): 3095-3114. DOI: 10.1093/cercor/bhx179.
KANDALEFT D, MURAYAMA K, ROESCH E, et al. Resting-state functional connectivity does not predict individual differences in the effects of emotion on memory[J/OL]. Sci Rep, 2022, 12(1): 14481 [2022-10-28]. DOI: 10.1038/s41598-022-18543-8.
QIU H, LI X, LUO Q, et al. Alterations in patients with major depressive disorder before and after electroconvulsive therapy measured by fractional amplitude of low-frequency fluctuations (fALFF)[J]. J Affect Disord, 2019, 244: 92-99. DOI: 10.1016/j.jad.2018.10.099.
FANG X, ZHANG R, BAO C, et al. Abnormal regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF) in first-episode drug-naïve schizophrenia patients comorbid with depression[J]. Brain Imaging Behav, 2021, 15(5): 2627-2636. DOI: 10.1007/s11682-021-00465-0.
ZHAO X, YAO J, LV Y, et al. Abnormalities of regional homogeneity and its correlation with clinical symptoms in Naïve patients with first-episode schizophrenia[J]. Brain Imaging Behav, 2019, 13(2): 503-513. DOI: 10.1007/s11682-018-9882-4.
LIU S, MA R, LUO Y, et al. Facial Expression Recognition and ReHo Analysis in Major Depressive Disorder[J/OL]. Front Psychol, 2021, 12: 688376 [2022-10-28]. DOI: 10.3389/fpsyg.2021.688376.
YANG M, LI J, YAO D, et al. Disrupted Intrinsic Local Synchronization in Poststroke Aphasia[J/OL]. Medicine, 2016, 95(11): e3101 [2022-10-28]. DOI: 10.1097/md.0000000000003101.
MA H, HUANG G, LI M, et al. The Predictive Value of Dynamic Intrinsic Local Metrics in Transient Ischemic Attack[J/OL]. Front Aging Neurosci, 2021, 13: 808094 [2022-10-28]. DOI: 10.3389/fnagi.2021.808094.
YANG J, GOHEL S, VACHHA B. Current methods and new directions in resting state fMRI[J]. Clin Imaging, 2020, 65: 47-53. DOI: 10.1016/j.clinimag.2020.04.004.
YUE Y, JIANG Y, SHEN T, et al. ALFF and ReHo Mapping Reveals Different Functional Patterns in Early- and Late-Onset Parkinson's Disease[J/OL]. Front Neurosci, 2020, 14: 141 [2022-10-28]. DOI: 10.3389/fnins.2020.00141.
ZHANG X, CHEN Z, LI N, et al. Regional Alteration within the Cerebellum and the Reorganization of the Cerebrocerebellar System following Poststroke Aphasia[J/OL]. Neural Plast, 2022, 2022: 3481423 [2022-10-28]. DOI: 10.1155/2022/3481423.
YOU K, PARK H J. Geometric learning of functional brain network on the correlation manifold[J/OL]. Sci Rep, 2022, 12(1): 17752 [2022-10-28]. DOI: 10.1038/s41598-022-21376-0.
JANG C, KNIGHT E Q, PAE C, et al. Individuality manifests in the dynamic reconfiguration of large-scale brain networks during movie viewing[J/OL]. Sci Rep, 2017, 7: 41414 [2022-10-28]. DOI: 10.1038/srep41414.
RAMAGE A E, AYTUR S, BALLARD K J. Resting-State Functional Magnetic Resonance Imaging Connectivity Between Semantic and Phonological Regions of Interest May Inform Language Targets in Aphasia[J]. J Speech Lang Hear Res, 2020, 63(9): 3051-3067. DOI: 10.1044/2020_jslhr-19-00117.
RIPAMONTI E, FRUSTACI M, ZONCA G, et al. Disentangling phonological and articulatory processing: A neuroanatomical study in aphasia[J]. Neuropsychologia, 2018, 121: 175-185. DOI: 10.1016/j.neuropsychologia.2018.10.015.
CANINI M, DELLA ROSA P A, CATRICALÀ E, et al. Semantic interference and its control: A functional neuroimaging and connectivity study[J]. Hum Brain Mapp, 2016, 37(11): 4179-4196. DOI: 10.1002/hbm.23304.
NAIR V A, YOUNG B M, LA C, et al. Functional connectivity changes in the language network during stroke recovery[J]. Ann Clin Transl Neurol, 2015, 2(2): 185-195. DOI: 10.1002/acn3.165.
JACKSON R L, CLOUTMAN L L, LAMBON RALPH M A. Exploring distinct default mode and semantic networks using a systematic ICA approach[J]. Cortex, 2019, 113: 279-297. DOI: 10.1016/j.cortex.2018.12.019.
DUNCAN E S, SMALL S L. Changes in dynamic resting state network connectivity following aphasia therapy[J]. Brain Imaging Behav, 2018, 12(4): 1141-1149. DOI: 10.1007/s11682-017-9771-2.
ZHANG C, XIA Y, FENG T, et al. Disrupted Functional Connectivity Within and Between Resting-State Networks in the Subacute Stage of Post-stroke Aphasia[J/OL]. Front Neurosci, 2021, 15: 746264 [2022-10-28]. DOI: 10.3389/fnins.2021.746264.
ZHAO Y, MATTESON D S, MOSTOFSKY S H, et al. Group linear non-Gaussian component analysis with applications to neuroimaging[J/OL]. Comput Stat Data Anal, 2022, 171: 107454 [2022-10-28]. DOI: 10.1016/j.csda.2022.107454.
ZHU D, CHANG J, FREEMAN S, et al. Changes of functional connectivity in the left frontoparietal network following aphasic stroke[J/OL]. Front Behav Neurosci, 2014, 8: 167 [2022-10-28]. DOI: 10.3389/fnbeh.2014.00167.
LOPEZ-BARROSO D, THIEBAUT DE SCHOTTEN M, MORAIS J, et al. Impact of literacy on the functional connectivity of vision and language related networks[J/OL]. Neuroimage, 2020, 213: 116722 [2022-10-28]. DOI: 10.1016/j.neuroimage.2020.116722.
WEI H L, CHEN J, CHEN Y C, et al. Impaired functional connectivity of limbic system in migraine without aura[J]. Brain Imaging Behav, 2020, 14(5): 1805-1814. DOI: 10.1007/s11682-019-00116-5.
ZHU Y, DAI L, ZHAO H, et al. Alterations in Effective Connectivity of the Hippocampus in Migraine without Aura[J]. J Pain Res, 2021, 14: 3333-3343. DOI: 10.2147/jpr.S327945.
ZHU Y, BAI L, LIANG P, et al. Disrupted brain connectivity networks in acute ischemic stroke patients[J]. Brain Imaging Behav, 2017, 11(2): 444-453. DOI: 10.1007/s11682-016-9525-6
CHEN X, CHEN L, ZHENG S, et al. Disrupted Brain Connectivity Networks in Aphasia Revealed by Resting-State fMRI[J/OL]. Front Aging Neurosci, 2021, 13: 666301 [2022-10-28]. DOI: 10.3389/fnagi.2021.666301.
ZHANG Y, WAMG J, WEI P, et al. Interhemispheric resting-state functional connectivity abnormalities in type 2 diabetes patients[J]. Ann Palliat Med, 2021, 10(7): 8123-8133. DOI: 10.21037/apm-21-1655.
YANG H, BAI L, ZHAO Y, et al. Increased inter-hemispheric resting-state functional connectivity in acute lacunar stroke patients with aphasia[J]. Exp Brain Res, 2017, 235(3): 941-948. DOI: 10.1007/s00221-016-4851-x.

PREV MRI research progress in attention deficit hyperactivity disorder
NEXT Research advances of radiomics in prognosis prediction of lower-grade gliomas

Tel & Fax: +8610-67113815    E-mail: